To improve the properties of low-carbonization of MgO–C refractories,the introduction of composite additives is an effective strategy.Al_(2)O_(3)–SiC composite powder was prepared from clay using electromagnetic ind...To improve the properties of low-carbonization of MgO–C refractories,the introduction of composite additives is an effective strategy.Al_(2)O_(3)–SiC composite powder was prepared from clay using electromagnetic induction heating and carbon embedded methods.Further,the Al_(2)O_(3)–SiC composite powder synthesized by electromagnetic induction heating at 600 A was added into low-carbon MgO–C refractories(4 wt.%)to improve their properties.The results showed that when the addition amount of Al_(2)O_(3)–SiC composite powder is within the range of 2.5–5.0 wt.%,the properties of low-carbon MgO–C samples were significantly improved,e.g.,the apparent porosity of 7.58%–8.04%,the bulk density of 2.98–2.99 g cm-3,the cold compressive strength of 55.72–57.93 MPa,the residual strength after three air quenching at 1100°C of 74.86%–78.04%,and the decarburized layer depth after oxidized at 1400°C for 2 h of 14.03–14.87 mm.Consequently,the idea for the rapid synthesis of Al_(2)O_(3)–SiC composite powder provides an alternative low-carbon MgO–C refractories performance optimization strategy.展开更多
SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this ...SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20239 and U1908227)the Fundamental Research Funds for the Central Universities(Grant No.N2125002)the open research fund for State Key Laboratory of Advance Refractories(Grant No.SKLAR202001).
文摘To improve the properties of low-carbonization of MgO–C refractories,the introduction of composite additives is an effective strategy.Al_(2)O_(3)–SiC composite powder was prepared from clay using electromagnetic induction heating and carbon embedded methods.Further,the Al_(2)O_(3)–SiC composite powder synthesized by electromagnetic induction heating at 600 A was added into low-carbon MgO–C refractories(4 wt.%)to improve their properties.The results showed that when the addition amount of Al_(2)O_(3)–SiC composite powder is within the range of 2.5–5.0 wt.%,the properties of low-carbon MgO–C samples were significantly improved,e.g.,the apparent porosity of 7.58%–8.04%,the bulk density of 2.98–2.99 g cm-3,the cold compressive strength of 55.72–57.93 MPa,the residual strength after three air quenching at 1100°C of 74.86%–78.04%,and the decarburized layer depth after oxidized at 1400°C for 2 h of 14.03–14.87 mm.Consequently,the idea for the rapid synthesis of Al_(2)O_(3)–SiC composite powder provides an alternative low-carbon MgO–C refractories performance optimization strategy.
基金supported by National Natural Science Foundation of China(Grant No. 50775133)
文摘SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.