Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC d...Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.展开更多
The effect of nitric oxide(NO) annealing on charge traps in the oxide insulator and transition layer in n-type4H–Si C metal–oxide–semiconductor(MOS) devices has been investigated using the time-dependent bias s...The effect of nitric oxide(NO) annealing on charge traps in the oxide insulator and transition layer in n-type4H–Si C metal–oxide–semiconductor(MOS) devices has been investigated using the time-dependent bias stress(TDBS),capacitance–voltage(C–V),and secondary ion mass spectroscopy(SIMS).It is revealed that two main categories of charge traps,near interface oxide traps(Nniot) and oxide traps(Not),have different responses to the TDBS and C–V characteristics in NO-annealed and Ar-annealed samples.The Nniotare mainly responsible for the hysteresis occurring in the bidirectional C–V characteristics,which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor.However,Not is mainly responsible for the TDBS induced C–V shifts.Electrons tunneling into the Not are hardly released quickly when suffering TDBS,resulting in the problem of the threshold voltage stability.Compared with the Ar-annealed sample,Nniotcan be significantly suppressed by the NO annealing,but there is little improvement of Not.SIMS results demonstrate that the Nniotare distributed within the transition layer,which correlated with the existence of the excess silicon.During the NO annealing process,the excess Si atoms incorporate into nitrogen in the transition layer,allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot.展开更多
A compact wirebond packaged phase-leg SiC/Si hybrid module was designed,developed,and tested.Details of the layout and gate drive designs are described.The IC chip for gate drive is carefully selected and compared.Dua...A compact wirebond packaged phase-leg SiC/Si hybrid module was designed,developed,and tested.Details of the layout and gate drive designs are described.The IC chip for gate drive is carefully selected and compared.Dual pulse test confirmed that,the switching loss of hybrid module is close to pure SiC MOSFET module,and it is much less than pure Si IGBT device.The cost of hybrid module is closer to Si IGBT.展开更多
SiC Hybrid switch(HyS)combines low conduction loss of Si IGBT and low switching loss of SiC MOSFET,and the cost is closer to that of Si IGBT.The promising high performances of HyS will bring considerable achievement i...SiC Hybrid switch(HyS)combines low conduction loss of Si IGBT and low switching loss of SiC MOSFET,and the cost is closer to that of Si IGBT.The promising high performances of HyS will bring considerable achievement in terms of enhancing power density of a converter system.By reviewing the gate drive pattern,gate drive hardware,current sharing,module design,converter design,and cost,this paper introduces state-of-the-art SiC HyS.展开更多
A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 6...A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 60 Hz transformer normally used to step up the output signal of a voltage source inverter to a medium-voltage level.Using SiC devices(1.2-6.5 kV SiC MOSFETs)which have a high breakdown voltage,enables the system to meet and withstand the medium-voltage stress using only a minimal number of cascaded modules.The SiC-based power electronics when used in the presented topology considerably reduce the complexity usually encountered when Si devices are used to meet the medium-voltage level and power scalability.Simulation and preliminary experimental results on a low-voltage prototype verifies the nine-level CHB topology presented in this study.展开更多
In recent years,next-generation power semiconductor devices,represented by silicon carbide(SiC)and gallium nitride(GaN),have gradually emerged.Because wide-bandgap(WBG)devices have better electrical characteristics th...In recent years,next-generation power semiconductor devices,represented by silicon carbide(SiC)and gallium nitride(GaN),have gradually emerged.Because wide-bandgap(WBG)devices have better electrical characteristics than those of silicon(Si)based devices,they have attracted increased attention both from academic researchers and industrial engineers.Employing WBG devices will further improve the efficiency and power density of power converters.However,the current price of WBG devices remains extremely high.Thus,some researches have focused on the hybrid utilization of WBG devices and Si-based devices to achieve a tradeoff between the performance and cost.To summarize the current research on WBG/Si hybrid applications,the issues mentioned above with representative research approaches,results,and characteristics,are systematically reviewed.Finally,the current research on WBG/Si hybrid applications and their future trends are discussed.展开更多
基金This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under ARPA-E and Power America Program and the CURENT Industry Partnership Program.
文摘Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61404098 and 61274079)the Doctoral Fund of Ministry of Education of China(Grant No.20130203120017)+2 种基金the National Key Basic Research Program of China(Grant No.2015CB759600)the National Grid Science&Technology Project,China(Grant No.SGRI-WD-71-14-018)the Key Specific Project in the National Science&Technology Program,China(Grant Nos.2013ZX02305002-002 and 2015CB759600)
文摘The effect of nitric oxide(NO) annealing on charge traps in the oxide insulator and transition layer in n-type4H–Si C metal–oxide–semiconductor(MOS) devices has been investigated using the time-dependent bias stress(TDBS),capacitance–voltage(C–V),and secondary ion mass spectroscopy(SIMS).It is revealed that two main categories of charge traps,near interface oxide traps(Nniot) and oxide traps(Not),have different responses to the TDBS and C–V characteristics in NO-annealed and Ar-annealed samples.The Nniotare mainly responsible for the hysteresis occurring in the bidirectional C–V characteristics,which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor.However,Not is mainly responsible for the TDBS induced C–V shifts.Electrons tunneling into the Not are hardly released quickly when suffering TDBS,resulting in the problem of the threshold voltage stability.Compared with the Ar-annealed sample,Nniotcan be significantly suppressed by the NO annealing,but there is little improvement of Not.SIMS results demonstrate that the Nniotare distributed within the transition layer,which correlated with the existence of the excess silicon.During the NO annealing process,the excess Si atoms incorporate into nitrogen in the transition layer,allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot.
基金This work is supported by The National key research and development program of China(2016YFB0100600)the Key Program of Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(QYZDBSSW-JSC044)the National Natural Science Foundation of China(No.51507166).
文摘A compact wirebond packaged phase-leg SiC/Si hybrid module was designed,developed,and tested.Details of the layout and gate drive designs are described.The IC chip for gate drive is carefully selected and compared.Dual pulse test confirmed that,the switching loss of hybrid module is close to pure SiC MOSFET module,and it is much less than pure Si IGBT device.The cost of hybrid module is closer to Si IGBT.
基金Supported by the National Key Research and Development Program of China(2016YFB0100600)the Key Program of Bureau of Frontier Sciences and Education,and Chinese Academy of Sciences(QYZDBSSW-JSC044).
文摘SiC Hybrid switch(HyS)combines low conduction loss of Si IGBT and low switching loss of SiC MOSFET,and the cost is closer to that of Si IGBT.The promising high performances of HyS will bring considerable achievement in terms of enhancing power density of a converter system.By reviewing the gate drive pattern,gate drive hardware,current sharing,module design,converter design,and cost,this paper introduces state-of-the-art SiC HyS.
文摘A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 60 Hz transformer normally used to step up the output signal of a voltage source inverter to a medium-voltage level.Using SiC devices(1.2-6.5 kV SiC MOSFETs)which have a high breakdown voltage,enables the system to meet and withstand the medium-voltage stress using only a minimal number of cascaded modules.The SiC-based power electronics when used in the presented topology considerably reduce the complexity usually encountered when Si devices are used to meet the medium-voltage level and power scalability.Simulation and preliminary experimental results on a low-voltage prototype verifies the nine-level CHB topology presented in this study.
基金Supported by the National Natural Science Foundation of China(51677054)the 16th Six Talent Peaks Project in Jiangsu Province(2019-TD-XNY-001).
文摘In recent years,next-generation power semiconductor devices,represented by silicon carbide(SiC)and gallium nitride(GaN),have gradually emerged.Because wide-bandgap(WBG)devices have better electrical characteristics than those of silicon(Si)based devices,they have attracted increased attention both from academic researchers and industrial engineers.Employing WBG devices will further improve the efficiency and power density of power converters.However,the current price of WBG devices remains extremely high.Thus,some researches have focused on the hybrid utilization of WBG devices and Si-based devices to achieve a tradeoff between the performance and cost.To summarize the current research on WBG/Si hybrid applications,the issues mentioned above with representative research approaches,results,and characteristics,are systematically reviewed.Finally,the current research on WBG/Si hybrid applications and their future trends are discussed.