High-temperature,high-power converters have gained importance in industrial applications given their ability to operate in adverse environments,such as in petroleum exploration,multi-electric aircrafts,and electric ve...High-temperature,high-power converters have gained importance in industrial applications given their ability to operate in adverse environments,such as in petroleum exploration,multi-electric aircrafts,and electric vehicles.SiC metaloxide-semiconductor field-effect transistor(MOSFET),a new,wide bandgap,high-temperature device,is the key component of these converters.In this study,the static and dynamic characteristics of the SiC MOSFET,half-bridge module,are investigated at the junction temperature of 180℃.A simplified experimental method is then proposed pertaining to the power operation of the SiC module at 180℃.This method is based on the use of a thermal resistance test platform and is proven convenient for the study of heat dissipation characteristics.The high-temperature characteristics of the module are verified based on the conducted experiments.Accordingly,a 100 kW high-temperature converter is built,and the test results show that the SiC converter can operate at a junction temperature of 180℃in a stable manner in compliance with the requirements of high-temperature,high-power applications.展开更多
基金supported by the National Key R&D Program of China (grant no. 2017YFB0903303)
文摘High-temperature,high-power converters have gained importance in industrial applications given their ability to operate in adverse environments,such as in petroleum exploration,multi-electric aircrafts,and electric vehicles.SiC metaloxide-semiconductor field-effect transistor(MOSFET),a new,wide bandgap,high-temperature device,is the key component of these converters.In this study,the static and dynamic characteristics of the SiC MOSFET,half-bridge module,are investigated at the junction temperature of 180℃.A simplified experimental method is then proposed pertaining to the power operation of the SiC module at 180℃.This method is based on the use of a thermal resistance test platform and is proven convenient for the study of heat dissipation characteristics.The high-temperature characteristics of the module are verified based on the conducted experiments.Accordingly,a 100 kW high-temperature converter is built,and the test results show that the SiC converter can operate at a junction temperature of 180℃in a stable manner in compliance with the requirements of high-temperature,high-power applications.