The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ...The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.展开更多
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh...The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.展开更多
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi...Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.展开更多
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st...Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.展开更多
The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effe...The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.展开更多
Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effe...Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.展开更多
The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Compo...The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.展开更多
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com...In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.展开更多
In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this co...In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.展开更多
The residual stress in a 20%SiC w/6061Al composite as extruded was investigated by using X ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distributi...The residual stress in a 20%SiC w/6061Al composite as extruded was investigated by using X ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.展开更多
In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering o...In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.展开更多
文摘The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU),China
文摘The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.
文摘Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.
基金Project(51271076)supported by the National Natural Science Foundation of China
文摘Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.
文摘The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.
基金Funded by the National Natural Science Foundation of China(51505434)the Key Scientific and Technological Project of Henan Province(172102210547)the Program for Innovative Research Team in Science and Technology in University of Henan Province(18IRTSTHN015)
文摘Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.
文摘The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.
文摘In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.
文摘In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.
文摘The residual stress in a 20%SiC w/6061Al composite as extruded was investigated by using X ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.
文摘In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.