有源功率因数校正(Active Power Factor Correction,简称APFC)是大功率电源应用的一项关键技术。分析了Boost PFC电路中半导体器件的开关损耗以及SiC肖特基二极管的工作特性。SiC肖特基二极管可以有效降低开关损耗,并有助于大功率APFC...有源功率因数校正(Active Power Factor Correction,简称APFC)是大功率电源应用的一项关键技术。分析了Boost PFC电路中半导体器件的开关损耗以及SiC肖特基二极管的工作特性。SiC肖特基二极管可以有效降低开关损耗,并有助于大功率APFC电路实现高频率应用。在一台3.6kW的样机上,利用SiC肖特基二极管实现了150kHz的开关工作频率。展开更多
提出一种应用于单相有源滤波器(active power filter,APF)的SiC功率器件的开关损耗模型。该模型考虑了封装和印制电路板(printed circuit board,PCB)的寄生参数与器件结电容的非线性。详细阐述四种单相APF工作状态下的建模原理,并给出...提出一种应用于单相有源滤波器(active power filter,APF)的SiC功率器件的开关损耗模型。该模型考虑了封装和印制电路板(printed circuit board,PCB)的寄生参数与器件结电容的非线性。详细阐述四种单相APF工作状态下的建模原理,并给出了各工作状态下各时间段的开关过程分析与损耗计算方程。基于影响APF谐波补偿性能的关键因素的分析,结合APF的工作特点,提出SiC器件高开关频率兼容驱动方式与封装及电路布局优化方案。搭建基于单相APF的SiC功率器件测试实验样机,在不同电压点和电流点下进行测试,并将测试结果与估算结果进行比较。比较结果高度吻合,功率损耗误差在10%以内,验证了提出的开关损耗模型的准确性和有效性。展开更多
传统无线电能传输电路多采用全桥或半桥逆变拓扑,该拓扑电路及控制方式相对复杂、可靠性较低;单管LC谐振逆变电路具有结构简单、无直通问题、可靠性高、可实现零电压开通(zero voltage switching,ZVS)等优点。但是由于LC谐振的影响,该...传统无线电能传输电路多采用全桥或半桥逆变拓扑,该拓扑电路及控制方式相对复杂、可靠性较低;单管LC谐振逆变电路具有结构简单、无直通问题、可靠性高、可实现零电压开通(zero voltage switching,ZVS)等优点。但是由于LC谐振的影响,该拓扑开关管耐压较高,普通Si器件无法满足需求。为此,该文研究一种基于碳化硅(silicon carbide,Si C)器件的单管LC谐振逆变无线电能传输系统。采用互感等效的方式,给出参数详细设计方法;搭建基于Si C器件的单管无线电能传输平台,通过实验比较电路采用Si C器件和采用Si器件在驱动特性、输出特性、负载特性和效率特性上的不同,验证将Si C器件应用于单管逆变无线电能传输电路的可行性。展开更多
文摘有源功率因数校正(Active Power Factor Correction,简称APFC)是大功率电源应用的一项关键技术。分析了Boost PFC电路中半导体器件的开关损耗以及SiC肖特基二极管的工作特性。SiC肖特基二极管可以有效降低开关损耗,并有助于大功率APFC电路实现高频率应用。在一台3.6kW的样机上,利用SiC肖特基二极管实现了150kHz的开关工作频率。
文摘提出一种应用于单相有源滤波器(active power filter,APF)的SiC功率器件的开关损耗模型。该模型考虑了封装和印制电路板(printed circuit board,PCB)的寄生参数与器件结电容的非线性。详细阐述四种单相APF工作状态下的建模原理,并给出了各工作状态下各时间段的开关过程分析与损耗计算方程。基于影响APF谐波补偿性能的关键因素的分析,结合APF的工作特点,提出SiC器件高开关频率兼容驱动方式与封装及电路布局优化方案。搭建基于单相APF的SiC功率器件测试实验样机,在不同电压点和电流点下进行测试,并将测试结果与估算结果进行比较。比较结果高度吻合,功率损耗误差在10%以内,验证了提出的开关损耗模型的准确性和有效性。
文摘对谐振全桥变换器而言,利用SiC MOSFET能提高开关频率,达到增大功率密度、降低系统成本、提高效率及简化拓扑电路的目的。文章研究了一种基于第三代SiC MOSFET的零电压(ZVS)LLC谐振全桥DC/DC变换器,利用Cree公司1 000 V/65 mΩ高压SiC MOSFET设计出高频、高功率密度20 k W ZVS LLC谐振隔离全桥变换器并进行了样机研制。实验结果表明,该变换器的开关频率范围扩大到180 k Hz至400 k Hz,最高效率可达到98.4%。该方案能广泛应用于高压直流电源、感应加热、电动汽车充电等三相隔离新能源领域。