For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Rece...For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Recent-ly, a commercially produced foundry ingot,the Duralcan composite of A356 Al alloy +20展开更多
The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whisk...The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions.The hybrid MMC shows a higher threshold stress intensity factor range, ?Kth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ?K. In the near-threshold region with decreasing ?K, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ?K in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ?K are also observed as the local unstable fracture mechanisms.However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ?K, whereas the FCG at higher ?K is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
The influences of volume fraction and particle size of SiC particulate reinforcements on the corrosion characteristics of SiCp/2024 Al metal matrix composites in aerated 3.5 wt pct NaCI aqueous solution were investiga...The influences of volume fraction and particle size of SiC particulate reinforcements on the corrosion characteristics of SiCp/2024 Al metal matrix composites in aerated 3.5 wt pct NaCI aqueous solution were investigated. The electrochemical behavior was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy, the general corrosion behavior of the composites was studied further by immersion tests. The results showed that pitting susceptibility was about the same for the composites and the alloy. The corrosion potentials were also independent of SiC phase. The corrosion resistance for the composites decreased as the volume fraction increased or particle size decreased.展开更多
SiCp/Gr/2024Al metal matrix composites were processed by squeeze casting technology. The microstructure of composites was observed by SEM and TEM, and the effects of graphite particulates and SiC particulates on the d...SiCp/Gr/2024Al metal matrix composites were processed by squeeze casting technology. The microstructure of composites was observed by SEM and TEM, and the effects of graphite particulates and SiC particulates on the damping behaviors of composites were also investigated. The results show that the microstructure of composites was dense and homogeneous, without any interfacial reactivity among reinforcement/matrix interfaces. Compared with the damping capacity of 2024A1, the damping capacity of composites was enhanced significantly by addition of SiC or graphite particulates. The main damping mechanisms of SiCp/Al composites were ascribed to the dislocation damping, and those of SiCp/Gr/2024Al were attributed to the intrinsic damping and interface damping.展开更多
In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering o...In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.展开更多
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com...In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.展开更多
The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite (SiCp?024AI MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion ...The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite (SiCp?024AI MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion protection of sulfuric acid anodized coatings on both materials was evaluated by electrochemical impedance spectroscopy. The results showed that the SiCp?024AI MMC is more susceptible to corrosion than its matrix alloy in 3.5% NaCI. For 2024AI, the anodized coating provides excellent corrosion resistance to 3.5% NaCI. The anodized coating on the SiCp?024AI provides satisfactory corrosion protection, but it is not as effective as that for 2024AI because the structure of the anodized layer is affected by the SiC particulates.展开更多
A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powder mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that th...A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powder mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that the inclining style is the best way to mix powders. The Al and nano SiC powders are pressed into blocks, dipped into molten Al, stirred into mold so that SiC/Al matrix composites can be obtained at last. The microstructure of SiC particle reinforced Al matrix composite prepared by "block dispersal and cast" method have been studied using scanning electron microscopy (SEM). Phase analysis has also been conducted by means of X-ray diffraction (XRD). The results show that nano SiC particles can be dispersed uniformly in Al matrix. Thus, it is feasible to prepare SiC particle reinforced Al matrix composites by this method.展开更多
A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures...A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures.展开更多
The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning elect...The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [展开更多
The present paper reveals the wear behaviour of Zinc - Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc ...The present paper reveals the wear behaviour of Zinc - Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc wear test is conducted to find the wear behaviour of the ZA43 alloy based composite. The sliding wear test is conducted for different load, speed and time. The result reveals that wear rates of composite is reduced as reinforcement increases. For the same working conditions wear rate increases with increasing load and with increasing speed. The tested samples are examined by taking micro structure photos and analyzed for the type of wear. Dominating wear types observed are delamination and abrasion.展开更多
Aluminium metal matrix composite is a relatively new material that has proved its position in automobile, aerospace and other engineering design applications due to its wear resistance and substantial hardness. Need f...Aluminium metal matrix composite is a relatively new material that has proved its position in automobile, aerospace and other engineering design applications due to its wear resistance and substantial hardness. Need for improved tribological performance has led to the design and selection of newer variants of the composite. The present investigation deals with the study of wear behaviour of Al-SiCp metal matrix composite for varying reinforcement content, applied load, sliding speed and time. Aluminium metal matrix composites reinforced with SiC particles are prepared by liquid metallurgy route using LM6 aluminium alloy and silicon carbide particles (size ~ 37 μm) by varying the weight fraction of SiC in the range of 5% - 10%. The material is synthesized by stir casting process in an electric melting furnace. The materials are then subjected to wear testing in a multitribotester using block on roller configuration. A plan of experiments based on L27 Taguchi orthogonal array is used to acquire the wear data in a controlled way. An analysis of variance is employed to investigate the influence of four controlling parameters, viz., SiC content, normal load, sliding speed and sliding time on dry sliding wear of the composites. It is observed that SiC content, sliding speed and normal load significantly affect the dry sliding wear. The optimal combination of the four controlling parameters is also obtained for minimum wear. The microstructure study of worn surfaces indicates nature of wear to be mostly abrasive.展开更多
SiCp/5210 Al metal matrix composites with a high volume fraction(50%) of SiC particles were fabricated by squeeze casting method. The effect of particle size on the mechanical properties of the composites was studied....SiCp/5210 Al metal matrix composites with a high volume fraction(50%) of SiC particles were fabricated by squeeze casting method. The effect of particle size on the mechanical properties of the composites was studied. The results show that with the decreasing of particle size,the bending strength of the composites increases,while the fracture toughness of the composites decreases. The bending strength and fracture toughness of 10 μm SiCp/5210 Al metal matrix composite are 825 MPa,10.0 MPa·m1/2,and the fracture toughness of 63 μm SiCp/5210 Al metal matrix composite reaches 12.8 MPa·m1/2. The main fracture mechanism changes from particle crack to particle/matrix interface de-bonding with the decreasing of particle size.展开更多
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves...The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.展开更多
Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-...Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-metal process combined with high energy ball milling and ultrasonic vibration methods. The nano particles were β-SiCp with an average diameter of 40 nm, and pre-oxidized at about 850 ℃ to form an oxide layer with a thickness of approximately 3 nm. The mm-sized composite granules containing nano-SiCp were firstly produced by milling the mixture of oxidized nano-SiCp and pure Al powders, and then were remelted in the matrix-metal melt with mechanical stirring and treated by ultrasonic vibration to prepare the composite. SEM analysis results show that the nano-SiC particles are distributed uniformly in the matrix and no serious agglomeration is observed. The tensile strength and elongation of the composite with 2wt.% nano-SiCp in as-cast state are 226 MPa and 5.5%, improved by 20% and 44%, respectively, compared with the A356 alloy.展开更多
The interfacial microstructure and tensile properties of the squeeze cast SiCw/AZ91 Mg composites were characterized. There exist uniform, line and discrete MgO particles at the interface between SiC whisker and magn...The interfacial microstructure and tensile properties of the squeeze cast SiCw/AZ91 Mg composites were characterized. There exist uniform, line and discrete MgO particles at the interface between SiC whisker and magnesium in the composites using acid aluminum phosphate binder. The interfacial reaction products MgO are beneficial to interfacial bonding between SiCw and the Mg matrix. resulting in an improvement of the mechanical properties of the composite.展开更多
Studies on the mechanical behaviour of squeeze-cast SiCw / Al composites have been revjewed. The results show that SiCw / Al composites exhibit improved mechan ical properties and cyclic hard ening. The reasons leadin...Studies on the mechanical behaviour of squeeze-cast SiCw / Al composites have been revjewed. The results show that SiCw / Al composites exhibit improved mechan ical properties and cyclic hard ening. The reasons leading to the above results are discussed. Localized deformation near SiC whiskers plays an important role in the initiation of microcracks in the composites, and the fracture of the composites is caused by the abrupt linking of microcracks展开更多
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur...β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.展开更多
The microstructural characteristics and Brinell hardness of a cylinder produced by centrifugal casting were investigated using 20%(volume fraction)SiCp/Zl104 composites.Macrostructure and XRD analysis show that most o...The microstructural characteristics and Brinell hardness of a cylinder produced by centrifugal casting were investigated using 20%(volume fraction)SiCp/Zl104 composites.Macrostructure and XRD analysis show that most of SiC particles segregate to the external circumference of the cylinder,the other SiC particles maintain in the inner circumference of the cylinder,and a free particle zone is left in the middle circumference of the cylinder.Microstructural characteristics and quantitative assessment of SiC particles show that most of congregated SiC particles in 20%SiCp/Zl104 composites are dispersed by centrifugal force,and the other congregated SiC particles and most of alumina oxide are segregated to the inner circumference of the cylinder.The SiC particles in aluminum melt can promote the refinement of primaryα(Al)during solidification,and fine primaryα(Al)grains can also promote the uniform distribution of SiC particles.Brinell hardness of SiCp/Zl104 composites is connected with not only the volume fraction of SiC particles,but also the distribution of SiC particles in matrix alloy.展开更多
文摘For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Recent-ly, a commercially produced foundry ingot,the Duralcan composite of A356 Al alloy +20
基金the Ministry of Education, Science, Sports and Culture of the Government of Japan for providing financial support during this research work
文摘The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions.The hybrid MMC shows a higher threshold stress intensity factor range, ?Kth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ?K. In the near-threshold region with decreasing ?K, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ?K in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ?K are also observed as the local unstable fracture mechanisms.However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ?K, whereas the FCG at higher ?K is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
文摘The influences of volume fraction and particle size of SiC particulate reinforcements on the corrosion characteristics of SiCp/2024 Al metal matrix composites in aerated 3.5 wt pct NaCI aqueous solution were investigated. The electrochemical behavior was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy, the general corrosion behavior of the composites was studied further by immersion tests. The results showed that pitting susceptibility was about the same for the composites and the alloy. The corrosion potentials were also independent of SiC phase. The corrosion resistance for the composites decreased as the volume fraction increased or particle size decreased.
文摘SiCp/Gr/2024Al metal matrix composites were processed by squeeze casting technology. The microstructure of composites was observed by SEM and TEM, and the effects of graphite particulates and SiC particulates on the damping behaviors of composites were also investigated. The results show that the microstructure of composites was dense and homogeneous, without any interfacial reactivity among reinforcement/matrix interfaces. Compared with the damping capacity of 2024A1, the damping capacity of composites was enhanced significantly by addition of SiC or graphite particulates. The main damping mechanisms of SiCp/Al composites were ascribed to the dislocation damping, and those of SiCp/Gr/2024Al were attributed to the intrinsic damping and interface damping.
文摘In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.
文摘In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.
基金The financial supports from the Research Fund for the Doc-toral Program of Higher Education (grant No.97014517), State Key Laboratory for Metal Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences and the National Natural Sc
文摘The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite (SiCp?024AI MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion protection of sulfuric acid anodized coatings on both materials was evaluated by electrochemical impedance spectroscopy. The results showed that the SiCp?024AI MMC is more susceptible to corrosion than its matrix alloy in 3.5% NaCI. For 2024AI, the anodized coating provides excellent corrosion resistance to 3.5% NaCI. The anodized coating on the SiCp?024AI provides satisfactory corrosion protection, but it is not as effective as that for 2024AI because the structure of the anodized layer is affected by the SiC particulates.
文摘A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powder mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that the inclining style is the best way to mix powders. The Al and nano SiC powders are pressed into blocks, dipped into molten Al, stirred into mold so that SiC/Al matrix composites can be obtained at last. The microstructure of SiC particle reinforced Al matrix composite prepared by "block dispersal and cast" method have been studied using scanning electron microscopy (SEM). Phase analysis has also been conducted by means of X-ray diffraction (XRD). The results show that nano SiC particles can be dispersed uniformly in Al matrix. Thus, it is feasible to prepare SiC particle reinforced Al matrix composites by this method.
基金Project (50975093) supported by the National Natural Science Foundation of ChinaProject (2012ZP0006) supported by the Fundamental Research Funds for the Central Universities,China
文摘A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures.
文摘The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [
文摘The present paper reveals the wear behaviour of Zinc - Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc wear test is conducted to find the wear behaviour of the ZA43 alloy based composite. The sliding wear test is conducted for different load, speed and time. The result reveals that wear rates of composite is reduced as reinforcement increases. For the same working conditions wear rate increases with increasing load and with increasing speed. The tested samples are examined by taking micro structure photos and analyzed for the type of wear. Dominating wear types observed are delamination and abrasion.
文摘Aluminium metal matrix composite is a relatively new material that has proved its position in automobile, aerospace and other engineering design applications due to its wear resistance and substantial hardness. Need for improved tribological performance has led to the design and selection of newer variants of the composite. The present investigation deals with the study of wear behaviour of Al-SiCp metal matrix composite for varying reinforcement content, applied load, sliding speed and time. Aluminium metal matrix composites reinforced with SiC particles are prepared by liquid metallurgy route using LM6 aluminium alloy and silicon carbide particles (size ~ 37 μm) by varying the weight fraction of SiC in the range of 5% - 10%. The material is synthesized by stir casting process in an electric melting furnace. The materials are then subjected to wear testing in a multitribotester using block on roller configuration. A plan of experiments based on L27 Taguchi orthogonal array is used to acquire the wear data in a controlled way. An analysis of variance is employed to investigate the influence of four controlling parameters, viz., SiC content, normal load, sliding speed and sliding time on dry sliding wear of the composites. It is observed that SiC content, sliding speed and normal load significantly affect the dry sliding wear. The optimal combination of the four controlling parameters is also obtained for minimum wear. The microstructure study of worn surfaces indicates nature of wear to be mostly abrasive.
文摘SiCp/5210 Al metal matrix composites with a high volume fraction(50%) of SiC particles were fabricated by squeeze casting method. The effect of particle size on the mechanical properties of the composites was studied. The results show that with the decreasing of particle size,the bending strength of the composites increases,while the fracture toughness of the composites decreases. The bending strength and fracture toughness of 10 μm SiCp/5210 Al metal matrix composite are 825 MPa,10.0 MPa·m1/2,and the fracture toughness of 63 μm SiCp/5210 Al metal matrix composite reaches 12.8 MPa·m1/2. The main fracture mechanism changes from particle crack to particle/matrix interface de-bonding with the decreasing of particle size.
基金Projects(5120414751274175)supported by the National Natural Science Foundation of China+3 种基金Projects(2011DFA505202014DFA50320)supported by the International Cooperation Program from the Ministry of Science and Technology of ChinaProject(20123088)supported by the Foundation for Graduate Students of Shanxi ProvinceChina
文摘The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.
基金financially supported by the National Natural Science Foundation of China(No.51574129)Technological Innovation Special Project of Hubei Province(No.2017AAA110)
文摘Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-metal process combined with high energy ball milling and ultrasonic vibration methods. The nano particles were β-SiCp with an average diameter of 40 nm, and pre-oxidized at about 850 ℃ to form an oxide layer with a thickness of approximately 3 nm. The mm-sized composite granules containing nano-SiCp were firstly produced by milling the mixture of oxidized nano-SiCp and pure Al powders, and then were remelted in the matrix-metal melt with mechanical stirring and treated by ultrasonic vibration to prepare the composite. SEM analysis results show that the nano-SiC particles are distributed uniformly in the matrix and no serious agglomeration is observed. The tensile strength and elongation of the composite with 2wt.% nano-SiCp in as-cast state are 226 MPa and 5.5%, improved by 20% and 44%, respectively, compared with the A356 alloy.
基金National Natllral S(tience l.'oundation of China (No. 59631080).
文摘The interfacial microstructure and tensile properties of the squeeze cast SiCw/AZ91 Mg composites were characterized. There exist uniform, line and discrete MgO particles at the interface between SiC whisker and magnesium in the composites using acid aluminum phosphate binder. The interfacial reaction products MgO are beneficial to interfacial bonding between SiCw and the Mg matrix. resulting in an improvement of the mechanical properties of the composite.
文摘Studies on the mechanical behaviour of squeeze-cast SiCw / Al composites have been revjewed. The results show that SiCw / Al composites exhibit improved mechan ical properties and cyclic hard ening. The reasons leading to the above results are discussed. Localized deformation near SiC whiskers plays an important role in the initiation of microcracks in the composites, and the fracture of the composites is caused by the abrupt linking of microcracks
基金Funded by the Research Collaborative Innovation Project of Jiangsu Province,China(BY2009129)the Science and Technology Project of Suzhou,China(SYG0905)
文摘β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.
基金Project(2008BB4177)supported by Natural Science Foundation of Chongqing City,China
文摘The microstructural characteristics and Brinell hardness of a cylinder produced by centrifugal casting were investigated using 20%(volume fraction)SiCp/Zl104 composites.Macrostructure and XRD analysis show that most of SiC particles segregate to the external circumference of the cylinder,the other SiC particles maintain in the inner circumference of the cylinder,and a free particle zone is left in the middle circumference of the cylinder.Microstructural characteristics and quantitative assessment of SiC particles show that most of congregated SiC particles in 20%SiCp/Zl104 composites are dispersed by centrifugal force,and the other congregated SiC particles and most of alumina oxide are segregated to the inner circumference of the cylinder.The SiC particles in aluminum melt can promote the refinement of primaryα(Al)during solidification,and fine primaryα(Al)grains can also promote the uniform distribution of SiC particles.Brinell hardness of SiCp/Zl104 composites is connected with not only the volume fraction of SiC particles,but also the distribution of SiC particles in matrix alloy.