期刊文献+
共找到3,052篇文章
< 1 2 153 >
每页显示 20 50 100
A Coprecipitation Coating Synthesis of SiC/YAG Composites 被引量:1
1
作者 NingZHANG HongqiangRU +1 位作者 XudongSUN QingkuiCAI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期323-326,共4页
The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechani... The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing(MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering usingthe different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPCcomposite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density ata low temperature, 100℃ lower than that of MM composite. The strength (573 MPa) and hardness (23.3 GPa) ofthe CPC composite are significantly higher than those (323 MPa and 13.5 GPa) of the MM composite, respectively. 展开更多
关键词 Coprecipitation sic/yag composites Mechanical mixing method
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
2
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/sic composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Tensile Mechanical Behavior and Failure Mechanism of a Plain-Woven SiCf/SiC Composites at Room and Elevated Temperatures
3
作者 Jianze He Xuefeng Teng +3 位作者 Xiao’an Hu Xiao Luo Qi Zeng Xueqiang Cao 《Journal of Materials Science and Chemical Engineering》 2024年第4期67-83,共17页
Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I... Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes. 展开更多
关键词 Plain-Woven sicf/sic composites Damage and Failure Analysis Stitching Hole
下载PDF
Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air 被引量:1
4
作者 Ranran Shi Wei Lin +5 位作者 Zheng Liu Junna Xu Jianlei Kuang Wenxiu Liu Qi Wang Wenbin Cao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1809-1815,共7页
Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix comp... Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement. 展开更多
关键词 sic nanowires glass composite flexural strength dielectric properties microwave absorption
下载PDF
Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression 被引量:1
5
作者 Mahmoud Ebrahimi Li Zhang +2 位作者 Qudong Wang Hao Zhou Wenzhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1608-1617,共10页
This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC pro... This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC process significantly affects the damping performance of the composite due to alterations in the density of dislocations and grain boundaries in the matrix alloy.Although there would be dynamic precipitation of the Mg17Al12 phase during processing which increases the phase interface and limits the mobility of dislocations and grain boundaries.The results also showed that the damping capacity of 1%SiC_(np)/AZ91D composite continuously decreases with adding CEC pass number and it consistently increases with rising the applied temperature.Considering the first derivative of the tanδ-T curve,the dominant damping mechanism based on test temperature can be divided into three regions.These three regions are as follows(i)dislocation vibration of the weak pinning points(≤T_(cr)),(ii)dislocation vibration of the strong pinning points(T_(cr)∼T_(V)),and(iii)grain boundary/interface sliding(≥T_(V)) 展开更多
关键词 Metal matrix composite sic nanoparticles Severe plastic deformation Temperature-dependent damping curves Damping mechanism
下载PDF
Preparation and oxidation property of ZrB_2-MoSi_2/SiC coating on carbon/carbon composites 被引量:14
6
作者 张武装 曾毅 +2 位作者 GBOLOGAH Lemuel 熊翔 黄伯云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1538-1544,共7页
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB... To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature. 展开更多
关键词 carbon/carbon composites ZrB2-MoSi2 sic COATING OXIDATION
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
7
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 C/C composites C/sic MOSI2 sic MULTILAYER COATING OXIDATION
下载PDF
Double SiC coating on carbon/carbon composites against oxidation by a two-step method 被引量:7
8
作者 孙粲 李贺军 +2 位作者 付前刚 张佳平 彭晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2107-2112,共6页
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer... To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating. 展开更多
关键词 carbon/carbon composites sic OXIDATION COATING
下载PDF
Microstructures and properties of Al-50%SiC composites for electronic packaging applications 被引量:9
9
作者 滕飞 余琨 +4 位作者 罗杰 房宏杰 史春丽 戴翌龙 熊汉青 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2647-2652,共6页
Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the p... Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the propertiesof the compositeswere investigated. The results show that SiC particles are distributed uniformly in the Al matrix. The coarse SiC particles result in higher coefficient of thermal expansion (CTE) and higher thermal conductivity (TC), while fine SiC particles decrease CTE and improve flexural strength of the composites. The morphology and size of SiC particles in the composite are not influenced by the annealing treatment at 400℃for 6h. However, the CTE and the flexural strength of annealed composites are decreased slightly, and the TCis improved. The TC, CTE and flexural strength of the Al/SiC composite with averageSiC particlesize of75 μm are 156 W/(m·K), 11.6×10^-6K^-1 and 229 MPa, respectively. 展开更多
关键词 Al-50%sic composites powder metallurgy thermal properties flexural strength electronic packagingmaterial
下载PDF
Effect of ZrC-SiC content on microstructure and ablation properties of C/C composites 被引量:3
10
作者 李军 杨鑫 +5 位作者 苏哲安 薛亮 钟平 李帅鹏 黄启忠 刘红卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2653-2664,共12页
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/... C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively. 展开更多
关键词 ZRC sic C/C composites ZRC sic ablation precursorinfiltration and pyrolysis
下载PDF
Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites 被引量:5
11
作者 罗贤 李超 +4 位作者 杨延清 许海嫚 李晓宇 刘帅 李鹏涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1317-1325,共9页
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com... C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase. 展开更多
关键词 Mo coating TiAl alloy sic fiber titanium matrix composite interracial reaction thermal stability
下载PDF
Microstructure and thermophysical properties of SiC/Al composites mixed with diamond 被引量:6
12
作者 郭宏 韩媛媛 +2 位作者 张习敏 贾成厂 徐骏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期170-174,共5页
The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ... The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little. 展开更多
关键词 sic/Al composites mixed with diamond thermal conductivity thermal expansion coefficient MICROSTRUCTURE
下载PDF
Microstructure and properties of Al/Si/SiC composites for electronic packaging 被引量:13
13
作者 朱晓敏 于家康 王新宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1686-1692,共7页
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh... The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution. 展开更多
关键词 Al/Si/sic composite electronic packaging thermal properties flexural strength
下载PDF
Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiC_f/SiC composites with PyC interphase 被引量:2
14
作者 史毅敏 罗发 +3 位作者 丁冬海 穆阳 周万城 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1484-1489,共6页
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C... The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior. 展开更多
关键词 sicf/sic composites thermal oxidation dielectric properties microwave absorbing mechanical properties
下载PDF
Oxidation behavior of C/C composites with SiC/ZrSiO_4-SiO_2 coating 被引量:3
15
作者 李杨 肖鹏 +2 位作者 李专 罗威 周伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期397-405,共9页
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r... A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%. 展开更多
关键词 C/C composite sic/ZrSiO4-SiO2 coating oxygen partial pressure ANTI-OXIDATION thermal shock residual compressive strength
下载PDF
Fabrication of Y_2Si_2O_7 coating and its oxidation protection for C/SiC composites 被引量:3
16
作者 马青松 蔡利辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期390-396,共7页
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the an... Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered. 展开更多
关键词 C/sic composites yttrium silicate COATING oxidation resistance
下载PDF
Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe-40Cr against SiC/2618 Al alloy composites 被引量:1
17
作者 姜澜 姜艳丽 +2 位作者 喻亮 苏楠 丁友东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2913-2924,共12页
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-... The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results. 展开更多
关键词 wear sic/Al 2618 alloy sic/Fe-40Cr co-continuous composite finite element method
下载PDF
SiC/SiC复合材料层板低速冲击及其剩余强度试验研究
18
作者 吴军 徐培飞 +2 位作者 荆瑞 张大海 费庆国 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第1期51-60,共10页
高速飞行器中的陶瓷基复合材料结构在服役过程中不可避免地会遇到低速冲击问题,低速冲击后的损伤形式以及剩余承载能力是影响飞行器结构安全的关键问题。本研究以二维编织SiC/SiC复合材料板件为研究对象,在不同能量下开展了低速冲击试验... 高速飞行器中的陶瓷基复合材料结构在服役过程中不可避免地会遇到低速冲击问题,低速冲击后的损伤形式以及剩余承载能力是影响飞行器结构安全的关键问题。本研究以二维编织SiC/SiC复合材料板件为研究对象,在不同能量下开展了低速冲击试验,分析了低速冲击载荷下试验件的表面损伤状态,通过计算机断层扫描技术观察了试验件内部的损伤形貌,结合冲击过程中的冲击响应曲线以及应变历史曲线,分析了SiC/SiC复合材料低速冲击过程的损伤机理。针对含勉强目视可见损伤的试验件开展了冲击后剩余强度试验,研究了勉强目视可见损伤对SiC/SiC复合材料剩余承载性能的影响。结果表明,在低速冲击载荷的作用下,试验件的表面损伤主要包括无表面损伤、勉强目视可见损伤、半穿透损伤以及穿透损伤,试验件的内部损伤主要有锥形体裂纹、纱线断裂以及分层损伤。低速冲击损伤会严重影响SiC/SiC复合材料的剩余性能,虽然试验件损伤勉强目视可见,但其剩余压缩强度为无损件81%,剩余拉伸强度仅为无损件的68%。 展开更多
关键词 sic/sic 陶瓷基复合材料 低速冲击 损伤特性 剩余强度
下载PDF
INVESTIGATION ON MECHANICAL PROPERTIES OF ZN-AL/SIC PARTICULATE COMPOSITES
19
作者 陶杰 肖军 +2 位作者 崔益华 李顺林 沃丁柱 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期23-29,共7页
In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on... In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on their rT..t'llanical properties. The results of ne-cural strength, impact strensttl, compressive strength, hardness values and wear rate of the composites show that the addition of SiCp, leads to the increase of the compressive strength and hardness values at both room and higher temperature, and wear resistance of the materials, accompanying with the slight decrease of the fie-cural strength and sharp reduction of the impacttoughness. The factors affecting the mechanical properties of the composites are discussed in the paper. 展开更多
关键词 metal matrix composite zinc alloy sic particle rheological casting technology mechanical properties
下载PDF
SiC_(f)/Ti65复合材料的拉伸行为研究
20
作者 孟凡玲 刘范凯 +1 位作者 杨丽娜 王玉敏 《热加工工艺》 北大核心 2024年第12期34-40,共7页
采用磁控溅射先驱丝法结合热等静压工艺制备SiC_(f)/Ti65复合材料,研究了SiC_(f)/Ti65复合材料室温、高温拉伸行为,揭示了SiC_(f)/Ti65复合材料拉伸断裂机制。研究结果表明:SiC_(f)/Ti65复合材料的室温、高温抗拉强度相比于Ti65合金的... 采用磁控溅射先驱丝法结合热等静压工艺制备SiC_(f)/Ti65复合材料,研究了SiC_(f)/Ti65复合材料室温、高温拉伸行为,揭示了SiC_(f)/Ti65复合材料拉伸断裂机制。研究结果表明:SiC_(f)/Ti65复合材料的室温、高温抗拉强度相比于Ti65合金的抗拉强度分别提升29%和164%,验证了复合材料的增强效果。SiC_(f)/Ti65复合材料的室温拉伸断裂机制为反应层断裂、纤维/基体界面脱粘、基体脆性断裂、纤维断裂、包套韧性断裂;高温断裂机制为反应层断裂、纤维/基体界面脱粘、纤维断裂、W/SiC界面脱粘、基体和包套韧性断裂。 展开更多
关键词 复合材料 拉伸性能 sic纤维 断裂机制
下载PDF
上一页 1 2 153 下一页 到第
使用帮助 返回顶部