Aluminum A390 alloys reinforced with 10 wt.%SiC composite,were produced by the compocasting method.The effects of temperature,time,and stirring speed of this compocasting method on the microstructure,mechanical and tr...Aluminum A390 alloys reinforced with 10 wt.%SiC composite,were produced by the compocasting method.The effects of temperature,time,and stirring speed of this compocasting method on the microstructure,mechanical and tribological properties of composite were investigated.The results indicated that with increasing the rotational speed from 450 to 550 r/min,the distribution of the SiC particles becomes more uniform.A sudden increase in porosity due to gas absorption results in a downtrend of elongation with an increase in stirring speed from 550 to 650 r/min.Furthermore,as the stirring time increases,the amount of agglomerates of primary Si particles is reduced,and a more uniform microstructure of SiC and Si particles is formed.Although the fracture mode is a combination of both brittle and ductile fractures,the main mechanism of the fracture in the compocast sample is ductile.The formation of a protective layer at a high temperature can result in a very low wear rate as compared to a wear test performed at a low temperature.Optimal particle uniformity and mechanical properties were obtained at processing parameters of 610刟C,550 r/min,and 20 min.展开更多
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites we...Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.展开更多
文摘Aluminum A390 alloys reinforced with 10 wt.%SiC composite,were produced by the compocasting method.The effects of temperature,time,and stirring speed of this compocasting method on the microstructure,mechanical and tribological properties of composite were investigated.The results indicated that with increasing the rotational speed from 450 to 550 r/min,the distribution of the SiC particles becomes more uniform.A sudden increase in porosity due to gas absorption results in a downtrend of elongation with an increase in stirring speed from 550 to 650 r/min.Furthermore,as the stirring time increases,the amount of agglomerates of primary Si particles is reduced,and a more uniform microstructure of SiC and Si particles is formed.Although the fracture mode is a combination of both brittle and ductile fractures,the main mechanism of the fracture in the compocast sample is ductile.The formation of a protective layer at a high temperature can result in a very low wear rate as compared to a wear test performed at a low temperature.Optimal particle uniformity and mechanical properties were obtained at processing parameters of 610刟C,550 r/min,and 20 min.
基金Project(CXZZ20140506150310438)supported by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.