采用喷射沉积法制备15%(体积分数)4.5 m SiCp/Al-20Si复合材料及其基体合金,研究该组材料的微观组织、力学性能、高周疲劳性能以及疲劳断口形貌。结果表明:SiC颗粒的加入有利于提高材料的力学性能;复合材料及其基体的高调疲劳寿命随应...采用喷射沉积法制备15%(体积分数)4.5 m SiCp/Al-20Si复合材料及其基体合金,研究该组材料的微观组织、力学性能、高周疲劳性能以及疲劳断口形貌。结果表明:SiC颗粒的加入有利于提高材料的力学性能;复合材料及其基体的高调疲劳寿命随应力幅值的减小而增加,在相同应力幅值下,复合材料的疲劳寿命远远高于基体合金。疲劳裂纹从大颗粒的初晶Si的断裂以及Si相脱离处形核,并开始扩展。对于复合材料而言,SiC颗粒尺寸较小,不容易发生断裂,在形核过程中,当裂纹遇到SiC颗粒时,裂纹或者避开增强体,或者受阻于SiC颗粒,只能在基体合金中扩展,从而扩大了疲劳形核区的面积,提高了材料的疲劳寿命。Si颗粒的脱离、Si相的断裂以及SiC颗粒与基体界面的脱粘是复合材料疲劳断裂失效的主要机制。展开更多
文摘采用喷射沉积法制备15%(体积分数)4.5 m SiCp/Al-20Si复合材料及其基体合金,研究该组材料的微观组织、力学性能、高周疲劳性能以及疲劳断口形貌。结果表明:SiC颗粒的加入有利于提高材料的力学性能;复合材料及其基体的高调疲劳寿命随应力幅值的减小而增加,在相同应力幅值下,复合材料的疲劳寿命远远高于基体合金。疲劳裂纹从大颗粒的初晶Si的断裂以及Si相脱离处形核,并开始扩展。对于复合材料而言,SiC颗粒尺寸较小,不容易发生断裂,在形核过程中,当裂纹遇到SiC颗粒时,裂纹或者避开增强体,或者受阻于SiC颗粒,只能在基体合金中扩展,从而扩大了疲劳形核区的面积,提高了材料的疲劳寿命。Si颗粒的脱离、Si相的断裂以及SiC颗粒与基体界面的脱粘是复合材料疲劳断裂失效的主要机制。