We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape contin...We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.展开更多
The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with t...The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed.展开更多
Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8°-off-axis 4H-Si...Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8°-off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Si- terminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm^2/V.s at a carrier density of 9.8.×10^12 cm^-2. Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.展开更多
In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400,...In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.展开更多
In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600℃ By using atomic force microscopy and Raman spectroscopy, we find that th...In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600℃ By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.展开更多
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect tran...Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density I DS, improved transconductance g m, reduced sheet resistance lion, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.展开更多
We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer, hnproved structural quality and tensile stress releasing are ...We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer, hnproved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer, we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.展开更多
In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there...In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates,including the hydrogen etching process,the stacking type,and the number of layers.Hopefully,our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.展开更多
高阻断电压、大功率密度、高转化效率是电力电子器件技术持续追求的目标,基于4H-SiC优异的材料特性,在电力电子器件应用方面具有广阔的发展前景。围绕SiC MOSFET器件对外延材料的需求,介绍了国内外主流的SiC外延设备及国产SiC衬底的发展...高阻断电压、大功率密度、高转化效率是电力电子器件技术持续追求的目标,基于4H-SiC优异的材料特性,在电力电子器件应用方面具有广阔的发展前景。围绕SiC MOSFET器件对外延材料的需求,介绍了国内外主流的SiC外延设备及国产SiC衬底的发展,并重点介绍了宽禁带半导体电力电子器件国家重点实验室在国产150 mm(6英寸)SiC衬底上的高速外延技术进展。通过关键技术攻关,实现了150 mm SiC外延材料表面缺陷密度≤0.5 cm-2,BPD缺陷密度≤0.1 cm-2,片内掺杂浓度不均匀性≤5%,片内厚度不均匀性≤1%。基于自主外延材料,实现了650~1200 V SiC MOSFET产品商业化以及6.5~15 kV高压SiC MOSFET器件的产品定型。展开更多
A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy(SSMBE) equipment was presented.The structural and...A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy(SSMBE) equipment was presented.The structural and electronic properties of the samples were characterized by reflection high energy diffraction(RHEED),X-ray diffraction Φ scans,Raman spectroscopy,and near edge X-ray absorption fine structure(NEXAFS) spectroscopy.The results of the RHEED and Φ scan,as well as the Raman spectra,showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate.The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing.The layer number of the graphene was between four and five,and the thickness of the unreacted SiC layer was about 1-1.5 nm.展开更多
基金supported by the Key Specific Projects in the National Science&Technology Program,China(Grant No.2011ZX02707)the Key Research Foundationfrom the Ministry of Education of China(Grant No.JY10000925016)the Specialized Research Fund from Xianyang Normal University,China(GrantNos.13XSYK010 and 201302026)
文摘We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.
基金Project supported by the National Key Basic Research Program of China (Grant No.2011CB932700)the National Natural Science Foundation of China (Grant Nos.51272279,51072223,and 50972162)
文摘The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed.
文摘Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8°-off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Si- terminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm^2/V.s at a carrier density of 9.8.×10^12 cm^-2. Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.
基金Project supported by the Key Research Foundation of the Ministry of Education of China (Grant No. JY10000925016)
文摘In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.
基金Project supported by the Key Research Foundation from the Ministry of Education of China (Grant No. JY10000925016).
文摘In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600℃ By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.
基金Supported by the National Natural Science Foundation of China under Grant No 61306006
文摘Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density I DS, improved transconductance g m, reduced sheet resistance lion, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.
基金Supported by the National Key R&D Program of China under Grant No 2016YFB0400200
文摘We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer, hnproved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer, we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.
基金Project supported by the Key Research Foundation from the Ministry of Education of China (Grant No. JY10000925016)
文摘In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates,including the hydrogen etching process,the stacking type,and the number of layers.Hopefully,our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.
文摘高阻断电压、大功率密度、高转化效率是电力电子器件技术持续追求的目标,基于4H-SiC优异的材料特性,在电力电子器件应用方面具有广阔的发展前景。围绕SiC MOSFET器件对外延材料的需求,介绍了国内外主流的SiC外延设备及国产SiC衬底的发展,并重点介绍了宽禁带半导体电力电子器件国家重点实验室在国产150 mm(6英寸)SiC衬底上的高速外延技术进展。通过关键技术攻关,实现了150 mm SiC外延材料表面缺陷密度≤0.5 cm-2,BPD缺陷密度≤0.1 cm-2,片内掺杂浓度不均匀性≤5%,片内厚度不均匀性≤1%。基于自主外延材料,实现了650~1200 V SiC MOSFET产品商业化以及6.5~15 kV高压SiC MOSFET器件的产品定型。
基金Project supported by the National Natural Science Foundation of China (Grant No. 50872128)the Anhui Provincial Natural Science Foundation,China (Grant No. 11040606M64)the Anhui Provincial Natural Science Foundation of Higher Education Institutions,China (Grant No. KJ2010B189)
文摘A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy(SSMBE) equipment was presented.The structural and electronic properties of the samples were characterized by reflection high energy diffraction(RHEED),X-ray diffraction Φ scans,Raman spectroscopy,and near edge X-ray absorption fine structure(NEXAFS) spectroscopy.The results of the RHEED and Φ scan,as well as the Raman spectra,showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate.The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing.The layer number of the graphene was between four and five,and the thickness of the unreacted SiC layer was about 1-1.5 nm.