TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra...Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.展开更多
A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe...A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.展开更多
A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface ...A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.展开更多
The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state betw...The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state between SiCparticle and matrix is prominent, the harmful microstructure or brittle phase can be restrained from the welded joint.Moreover, the density of dislocation in the matrix near the interface and in the matrix are all so higher than that ofparent composite, the dislocation entwists each other intensively resulted in welding the composite successfully.展开更多
Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstru...Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstructureof joints was analyzed by means of optical microscope and scanning electron microscope in order to study the relationship between the macro-properties of joints and the microstructures. It was found that diffusion bonding couldbe used for bonding aluminum matrix composites successfully. Meanwhile, the properties of the matrix and the jointwere all affected by some defects such as the reinforcement aggregation in aluminum matrix composites made bystirring casting.展开更多
SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an ...SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.展开更多
Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effe...Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.展开更多
The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such ...The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such as volume fraction of SiC, cutting speed and feed rate were considered. Artificial neural networks (ANN) was used to train and simulate the experimental data. Genetic algorithms (GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics. Validation of optimized results was also performed by confirmation experiments.展开更多
To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was...To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.展开更多
50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient ...50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.展开更多
The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation...The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation broth was typical of lignocellulose degradation by MC1, decreasing in the early phase and increasing in later stages of the degradation. The microbial biomass peaked on the day 3 after degradation. The MC1 efficiently degraded the corn stalk by nearly 70% during which its cellulose content decreased by 71.2%, hemicellulose by 76.5% and lignin by 24.6%. The content of water-soluble carbohydrates (WSC) in the fermentation broth increased progressively during the first three days, and decreased thereafter, suggesting an accumulation of WSC in the early phase of the degradation process. Total levels of various volatile products peaked in the third day after degradation, and 7 types of volatile products were detected in the fermentation broth. These were ethanol, acetic acid, 1,2-ethanediol, propanoic acid, butanoic acid, 3- methyl-butanoic acid and glycerine. Six major compounds were quantitatively analysed and the contents of each compound were ethanol (0.584 g/L), acetic acid (0.735 g/L), 1,2-ethanediol (0.772 g/L), propanoic acid (0.026 g/L), butanoic acid (0.018 g/L) and glycerine (4.203 g/L). Characterization of bacterial cells collected from the culture solution, based on 16S rDNA PCR-DGGE analysis of DNAs, showed that the composition of bacterial community in MC1 coincided basically with observations from previous studies. This indicated that the structure of MC1 is very stable during degradation of different lignocellulose materials.展开更多
The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with C...The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%.展开更多
A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-...A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.展开更多
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites we...Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NT2021020)。
文摘Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.
文摘A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.
基金This research was supported by the Science Foundation of China University of Petroleum-Beijing(No.2462023QNXZ002)the National Key R&D Program of China(2021YFA1501201)+2 种基金the National Natural Science Foundation of China(No.22278174)Independent research project of State Key Laboratory of heavy oil(2021–01)Shandong Excellent Young Scientists Fund Program(Overseas,2022HWYQ-082).
文摘A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.
基金This work was supported by the National Natural Science Foundation of China under grant No. 50171025.
文摘The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state between SiCparticle and matrix is prominent, the harmful microstructure or brittle phase can be restrained from the welded joint.Moreover, the density of dislocation in the matrix near the interface and in the matrix are all so higher than that ofparent composite, the dislocation entwists each other intensively resulted in welding the composite successfully.
基金This work was supported by the National Natural Science Foundation of China (grant No.50171025) and by open project of foundation of National Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University.
文摘Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstructureof joints was analyzed by means of optical microscope and scanning electron microscope in order to study the relationship between the macro-properties of joints and the microstructures. It was found that diffusion bonding couldbe used for bonding aluminum matrix composites successfully. Meanwhile, the properties of the matrix and the jointwere all affected by some defects such as the reinforcement aggregation in aluminum matrix composites made bystirring casting.
基金Projects (51101043, 50801017, 51001036) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.201130) supported by the Fundamental Research Funds for the Central Universities, China
文摘SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.
基金Funded by the National Natural Science Foundation of China(51505434)the Key Scientific and Technological Project of Henan Province(172102210547)the Program for Innovative Research Team in Science and Technology in University of Henan Province(18IRTSTHN015)
文摘Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.
文摘The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such as volume fraction of SiC, cutting speed and feed rate were considered. Artificial neural networks (ANN) was used to train and simulate the experimental data. Genetic algorithms (GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics. Validation of optimized results was also performed by confirmation experiments.
基金Project (CXZZ20140506150310438) supported by the Science and Technology Program of Shenzhen City, ChinaProject (2017GK2261) supported by the Science and Technology Program of Hunan Province, ChinaProject (2017zzts111) supported by the Fundamental Research Funds for the Central Universities, China。
文摘To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.
基金Project(2014DFA50860) supported by the International Science & Technology Cooperation Program of Ministry of Science and Technology of China
文摘50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.
基金This work was supported by the National Natural Science Foundation of China(No.30571088)the National Key Technology Research and Development Program of China during the 11th Five-Year Plan Period(No.2006BAD07A01,2006BAD25B04).
文摘The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation broth was typical of lignocellulose degradation by MC1, decreasing in the early phase and increasing in later stages of the degradation. The microbial biomass peaked on the day 3 after degradation. The MC1 efficiently degraded the corn stalk by nearly 70% during which its cellulose content decreased by 71.2%, hemicellulose by 76.5% and lignin by 24.6%. The content of water-soluble carbohydrates (WSC) in the fermentation broth increased progressively during the first three days, and decreased thereafter, suggesting an accumulation of WSC in the early phase of the degradation process. Total levels of various volatile products peaked in the third day after degradation, and 7 types of volatile products were detected in the fermentation broth. These were ethanol, acetic acid, 1,2-ethanediol, propanoic acid, butanoic acid, 3- methyl-butanoic acid and glycerine. Six major compounds were quantitatively analysed and the contents of each compound were ethanol (0.584 g/L), acetic acid (0.735 g/L), 1,2-ethanediol (0.772 g/L), propanoic acid (0.026 g/L), butanoic acid (0.018 g/L) and glycerine (4.203 g/L). Characterization of bacterial cells collected from the culture solution, based on 16S rDNA PCR-DGGE analysis of DNAs, showed that the composition of bacterial community in MC1 coincided basically with observations from previous studies. This indicated that the structure of MC1 is very stable during degradation of different lignocellulose materials.
基金Project(2017zzts111)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%.
文摘A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.
基金Project(CXZZ20140506150310438)supported by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.