A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe...A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.展开更多
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra...Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.展开更多
Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effe...Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.展开更多
The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such ...The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such as volume fraction of SiC, cutting speed and feed rate were considered. Artificial neural networks (ANN) was used to train and simulate the experimental data. Genetic algorithms (GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics. Validation of optimized results was also performed by confirmation experiments.展开更多
To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was...To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.展开更多
The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with C...The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%.展开更多
A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-...A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.展开更多
Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface o...Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface of SiCp and the interface between SiCp and Al were characterized by XRD, SEM, EDS and EPMA. The results show that it is favorable for the reaction between TiO2-C on the surface of SiCp and Al at the SiCp-Al interface at 1 050 ℃. Besides, the process of Na3 AlF6 melting, dissolving and then contacting with Al2 O3 formed the NaF-AlF3-Al2 O3 system, which generated OAlF2-, promoting the dessolution of Al2 O3 film on the surface of Al powder. Na3 AlF6 meets the needs of chemical reaction in TiO2-C-Al system at the SiCpAl interface in the way of offering more molten Al. After 0.75 wt% Na3 AlF6 was added into raw materials, the whole TiO2-C film and most SiO2 film were destroyed and the interfacial bonding between SiCp and Al was keeping good, in which no obvious void and crack were observed. Meanwhile, no brittle Al4 C3 phase formed in the system. At this time, the flexure strength and density of samples presented optimal values, reaching up to 106.5 MPa and 90.77% respectively.展开更多
The fracture behavior of SiCp/A356 composite at room and high temperatures was studied. Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles...The fracture behavior of SiCp/A356 composite at room and high temperatures was studied. Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. As the tensile temperature increases, the composite changes the main fracture behavior to the separation fracture of the bonding surface between SiC particles and A356 matrix. When the tensile temperature reaches 573 K, the fracture behavior of the composites is almost the whole separation fracture of the bonding surface, which is the main strengthening mechanism at high temperature. Under the cycle stress condition at room and high temperatures, the main fracture behavior of the composites is always a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. However, under the cycle stress at high temperature, cycle behavior of the composites changes from cycle hardening at room temperature to the cycle softening at high temperature.展开更多
An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center ...An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.展开更多
The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state betw...The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state between SiCparticle and matrix is prominent, the harmful microstructure or brittle phase can be restrained from the welded joint.Moreover, the density of dislocation in the matrix near the interface and in the matrix are all so higher than that ofparent composite, the dislocation entwists each other intensively resulted in welding the composite successfully.展开更多
2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of Si...2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of SiC nanoparticle is 2%, 5% and 7%, respectively. The as cast composites were solution treated followed by aging treatment. The experimental results show that the SiC nanoparticles are more effective in improving the hardness and tensile strength of the composites than SiC whiskers. The hardening kinetics of the composites is enhanced by reinforcements addition and the peak aging time is 4-5 h. The hardness of all the hybrid composite decreases at the initial aging stage, suggesting that dislocation recovery softening process coexists with precipitation hardening. DSC study shows that the GP zone formation of the hybrid composites is suppressed.展开更多
Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality...Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.展开更多
文摘A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NT2021020)。
文摘Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.
基金Funded by the National Natural Science Foundation of China(51505434)the Key Scientific and Technological Project of Henan Province(172102210547)the Program for Innovative Research Team in Science and Technology in University of Henan Province(18IRTSTHN015)
文摘Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.
文摘The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such as volume fraction of SiC, cutting speed and feed rate were considered. Artificial neural networks (ANN) was used to train and simulate the experimental data. Genetic algorithms (GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics. Validation of optimized results was also performed by confirmation experiments.
基金Project (CXZZ20140506150310438) supported by the Science and Technology Program of Shenzhen City, ChinaProject (2017GK2261) supported by the Science and Technology Program of Hunan Province, ChinaProject (2017zzts111) supported by the Fundamental Research Funds for the Central Universities, China。
文摘To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.
基金Project(2017zzts111)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%.
文摘A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.
文摘Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface of SiCp and the interface between SiCp and Al were characterized by XRD, SEM, EDS and EPMA. The results show that it is favorable for the reaction between TiO2-C on the surface of SiCp and Al at the SiCp-Al interface at 1 050 ℃. Besides, the process of Na3 AlF6 melting, dissolving and then contacting with Al2 O3 formed the NaF-AlF3-Al2 O3 system, which generated OAlF2-, promoting the dessolution of Al2 O3 film on the surface of Al powder. Na3 AlF6 meets the needs of chemical reaction in TiO2-C-Al system at the SiCpAl interface in the way of offering more molten Al. After 0.75 wt% Na3 AlF6 was added into raw materials, the whole TiO2-C film and most SiO2 film were destroyed and the interfacial bonding between SiCp and Al was keeping good, in which no obvious void and crack were observed. Meanwhile, no brittle Al4 C3 phase formed in the system. At this time, the flexure strength and density of samples presented optimal values, reaching up to 106.5 MPa and 90.77% respectively.
基金This work was financiallysupportedbythe National High Technology Research and Development Pro-gram of China(863Program)(No.2003AA331190).
文摘The fracture behavior of SiCp/A356 composite at room and high temperatures was studied. Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. As the tensile temperature increases, the composite changes the main fracture behavior to the separation fracture of the bonding surface between SiC particles and A356 matrix. When the tensile temperature reaches 573 K, the fracture behavior of the composites is almost the whole separation fracture of the bonding surface, which is the main strengthening mechanism at high temperature. Under the cycle stress condition at room and high temperatures, the main fracture behavior of the composites is always a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. However, under the cycle stress at high temperature, cycle behavior of the composites changes from cycle hardening at room temperature to the cycle softening at high temperature.
基金Funded by the National Defense Basic Scientific ResearchAerospace Science and Technology Corporation Commonality Technology Research Project
文摘An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.
基金This work was supported by the National Natural Science Foundation of China under grant No. 50171025.
文摘The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state between SiCparticle and matrix is prominent, the harmful microstructure or brittle phase can be restrained from the welded joint.Moreover, the density of dislocation in the matrix near the interface and in the matrix are all so higher than that ofparent composite, the dislocation entwists each other intensively resulted in welding the composite successfully.
基金Project(50071018) supported by the National Natural Science Foundation of China
文摘2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of SiC nanoparticle is 2%, 5% and 7%, respectively. The as cast composites were solution treated followed by aging treatment. The experimental results show that the SiC nanoparticles are more effective in improving the hardness and tensile strength of the composites than SiC whiskers. The hardening kinetics of the composites is enhanced by reinforcements addition and the peak aging time is 4-5 h. The hardness of all the hybrid composite decreases at the initial aging stage, suggesting that dislocation recovery softening process coexists with precipitation hardening. DSC study shows that the GP zone formation of the hybrid composites is suppressed.
基金supported by the National Natural Science Foundation of China(Nos.51705249, 52075255)the China Postdoctoral Science Foundation (No.2019M661823)
文摘Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.