Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effe...Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.展开更多
The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such ...The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such as volume fraction of SiC, cutting speed and feed rate were considered. Artificial neural networks (ANN) was used to train and simulate the experimental data. Genetic algorithms (GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics. Validation of optimized results was also performed by confirmation experiments.展开更多
To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was...To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.展开更多
The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with C...The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%.展开更多
A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-...A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.展开更多
Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface o...Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface of SiCp and the interface between SiCp and Al were characterized by XRD, SEM, EDS and EPMA. The results show that it is favorable for the reaction between TiO2-C on the surface of SiCp and Al at the SiCp-Al interface at 1 050 ℃. Besides, the process of Na3 AlF6 melting, dissolving and then contacting with Al2 O3 formed the NaF-AlF3-Al2 O3 system, which generated OAlF2-, promoting the dessolution of Al2 O3 film on the surface of Al powder. Na3 AlF6 meets the needs of chemical reaction in TiO2-C-Al system at the SiCpAl interface in the way of offering more molten Al. After 0.75 wt% Na3 AlF6 was added into raw materials, the whole TiO2-C film and most SiO2 film were destroyed and the interfacial bonding between SiCp and Al was keeping good, in which no obvious void and crack were observed. Meanwhile, no brittle Al4 C3 phase formed in the system. At this time, the flexure strength and density of samples presented optimal values, reaching up to 106.5 MPa and 90.77% respectively.展开更多
The fracture behavior of SiCp/A356 composite at room and high temperatures was studied. Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles...The fracture behavior of SiCp/A356 composite at room and high temperatures was studied. Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. As the tensile temperature increases, the composite changes the main fracture behavior to the separation fracture of the bonding surface between SiC particles and A356 matrix. When the tensile temperature reaches 573 K, the fracture behavior of the composites is almost the whole separation fracture of the bonding surface, which is the main strengthening mechanism at high temperature. Under the cycle stress condition at room and high temperatures, the main fracture behavior of the composites is always a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. However, under the cycle stress at high temperature, cycle behavior of the composites changes from cycle hardening at room temperature to the cycle softening at high temperature.展开更多
An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center ...An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.展开更多
2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of Si...2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of SiC nanoparticle is 2%, 5% and 7%, respectively. The as cast composites were solution treated followed by aging treatment. The experimental results show that the SiC nanoparticles are more effective in improving the hardness and tensile strength of the composites than SiC whiskers. The hardening kinetics of the composites is enhanced by reinforcements addition and the peak aging time is 4-5 h. The hardness of all the hybrid composite decreases at the initial aging stage, suggesting that dislocation recovery softening process coexists with precipitation hardening. DSC study shows that the GP zone formation of the hybrid composites is suppressed.展开更多
Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality...Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.展开更多
SiCp/ Al composites containing high volume fraction of SiC particles were fabricated by spark plasma sintering (SPS). and their thermophysical properties, such as thermal conductivity (TC) and co.lent of thermal e...SiCp/ Al composites containing high volume fraction of SiC particles were fabricated by spark plasma sintering (SPS). and their thermophysical properties, such as thermal conductivity (TC) and co.lent of thermal expansion (CTE), were characterized. The electric field in the vacuum column was calculated and the generation condition of the spark was analyzed. Spark can be generated by a low current if the cavity in the green body is large enough. A high relative density of the composites was successfully achieved through the optimization of sintering parameters. The measured TCs of the SiCp/ Al composites fabricated by SPS are higher than 195 W/m ·K.展开更多
Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed...Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).展开更多
A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe...A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.展开更多
SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between co...SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.展开更多
SiCp/1060Al, SiCp/ZL101,SiCp/ZL102 composites with SiCp volume fraction of 55% were fabricated by pressureless infiltration. The microstructure was examined and thermal properties were characterized for SiCp/Al compos...SiCp/1060Al, SiCp/ZL101,SiCp/ZL102 composites with SiCp volume fraction of 55% were fabricated by pressureless infiltration. The microstructure was examined and thermal properties were characterized for SiCp/Al composites. The results show that the composites are dense and macroscopically homogeneous. With the increase of temperature, the mean linear coefficient of thermal expansion(CTE) at 25-200℃of the composites increases and ranges from 7.23×10-6 to 10.4×10-6K-1, but thermal conductivity declines gradually at the same time. With the increase of Si content in the Al matrix, CTE of the composites declines and thermal conductivity also declines but not linearly, when Si content is up to 7%, the average thermal conductivity is 140.4 W/(m·K), which is close to that of the SiCp/1060Al composite (144.6 W/(m·K)). While Si content is 11.7%, the average thermal conductivity declines markedly to 87.74 W/(m·K). The annealing treatment is better than the solution aging treatment in reducing CTE and improving thermal conductivity of the composites. Compared with conventional thermal management materials, SiCp/Al composites are potential candidate materials for advanced electronic packaging due to their tailorable thermo-physical properties.展开更多
Unidirectional Tungsten filament (W_f) reinforced pure Al,Al-6Ti-6Nb and SiC_p-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical prope...Unidirectional Tungsten filament (W_f) reinforced pure Al,Al-6Ti-6Nb and SiC_p-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical properties were investigated. It was indicated that no reaction products appeared at W_f/Al interfaces in pure Al matrix composites. While, in W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb,intermetallic WAl_4 interfacial reaction products formed. Much better strengthening effect from W filament was shown in the W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb composites than in the pure Al matrix composite. Their strength reached 319 and 339MPa, respectively, with only a small content of W_f(<5Vol.%). The excellent reinforcement effects could be predominantly attributed to the strong W_f/Al interfacial bonding strength due to the interfacial reaction.展开更多
Aluminium metal matrix composite is a relatively new material that has proved its position in automobile, aerospace and other engineering design applications due to its wear resistance and substantial hardness. Need f...Aluminium metal matrix composite is a relatively new material that has proved its position in automobile, aerospace and other engineering design applications due to its wear resistance and substantial hardness. Need for improved tribological performance has led to the design and selection of newer variants of the composite. The present investigation deals with the study of wear behaviour of Al-SiCp metal matrix composite for varying reinforcement content, applied load, sliding speed and time. Aluminium metal matrix composites reinforced with SiC particles are prepared by liquid metallurgy route using LM6 aluminium alloy and silicon carbide particles (size ~ 37 μm) by varying the weight fraction of SiC in the range of 5% - 10%. The material is synthesized by stir casting process in an electric melting furnace. The materials are then subjected to wear testing in a multitribotester using block on roller configuration. A plan of experiments based on L27 Taguchi orthogonal array is used to acquire the wear data in a controlled way. An analysis of variance is employed to investigate the influence of four controlling parameters, viz., SiC content, normal load, sliding speed and sliding time on dry sliding wear of the composites. It is observed that SiC content, sliding speed and normal load significantly affect the dry sliding wear. The optimal combination of the four controlling parameters is also obtained for minimum wear. The microstructure study of worn surfaces indicates nature of wear to be mostly abrasive.展开更多
SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an ...SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.展开更多
基金Funded by the National Natural Science Foundation of China(51505434)the Key Scientific and Technological Project of Henan Province(172102210547)the Program for Innovative Research Team in Science and Technology in University of Henan Province(18IRTSTHN015)
文摘Particle removal mechanism was presented during machining particle SiC/Al composites with diamond grinding tool. The relevant removal modes and their mechanisms were discussed considering the impact and squeezing effect of diamond grit on the SiC particle. The experimental results show that the aluminum matrix has larger plastic deformation, so the aluminum mixed with the surplus SiC particles is cut from the surface. The SiC particles can be removed in multiple ways, such as broken/fractured, micro cracks, shearing and pulled out, etc. More particles removed by shearing, and less particles removed by fractured during material removal progress can produce a better machined surface.
文摘The present work is focused on optimization of machining characteristics of AI/SiCp composites. The machining characteristics such as specific energy, tool wear and surface roughness were studied. The parameters such as volume fraction of SiC, cutting speed and feed rate were considered. Artificial neural networks (ANN) was used to train and simulate the experimental data. Genetic algorithms (GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics. Validation of optimized results was also performed by confirmation experiments.
基金Project (CXZZ20140506150310438) supported by the Science and Technology Program of Shenzhen City, ChinaProject (2017GK2261) supported by the Science and Technology Program of Hunan Province, ChinaProject (2017zzts111) supported by the Fundamental Research Funds for the Central Universities, China。
文摘To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.
基金Project(2017zzts111)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%.
文摘A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.
文摘Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface of SiCp and the interface between SiCp and Al were characterized by XRD, SEM, EDS and EPMA. The results show that it is favorable for the reaction between TiO2-C on the surface of SiCp and Al at the SiCp-Al interface at 1 050 ℃. Besides, the process of Na3 AlF6 melting, dissolving and then contacting with Al2 O3 formed the NaF-AlF3-Al2 O3 system, which generated OAlF2-, promoting the dessolution of Al2 O3 film on the surface of Al powder. Na3 AlF6 meets the needs of chemical reaction in TiO2-C-Al system at the SiCpAl interface in the way of offering more molten Al. After 0.75 wt% Na3 AlF6 was added into raw materials, the whole TiO2-C film and most SiO2 film were destroyed and the interfacial bonding between SiCp and Al was keeping good, in which no obvious void and crack were observed. Meanwhile, no brittle Al4 C3 phase formed in the system. At this time, the flexure strength and density of samples presented optimal values, reaching up to 106.5 MPa and 90.77% respectively.
基金This work was financiallysupportedbythe National High Technology Research and Development Pro-gram of China(863Program)(No.2003AA331190).
文摘The fracture behavior of SiCp/A356 composite at room and high temperatures was studied. Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. As the tensile temperature increases, the composite changes the main fracture behavior to the separation fracture of the bonding surface between SiC particles and A356 matrix. When the tensile temperature reaches 573 K, the fracture behavior of the composites is almost the whole separation fracture of the bonding surface, which is the main strengthening mechanism at high temperature. Under the cycle stress condition at room and high temperatures, the main fracture behavior of the composites is always a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix. However, under the cycle stress at high temperature, cycle behavior of the composites changes from cycle hardening at room temperature to the cycle softening at high temperature.
基金Funded by the National Defense Basic Scientific ResearchAerospace Science and Technology Corporation Commonality Technology Research Project
文摘An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.
基金Project(50071018) supported by the National Natural Science Foundation of China
文摘2024Al based composites reinforced by a hybrid of SiC whisker and SiC nanoparticle were fabricated by a squeeze casting route. In the (SiCw+SiCp)/Al composites, the volume fraction of SiC whisker is 20% and that of SiC nanoparticle is 2%, 5% and 7%, respectively. The as cast composites were solution treated followed by aging treatment. The experimental results show that the SiC nanoparticles are more effective in improving the hardness and tensile strength of the composites than SiC whiskers. The hardening kinetics of the composites is enhanced by reinforcements addition and the peak aging time is 4-5 h. The hardness of all the hybrid composite decreases at the initial aging stage, suggesting that dislocation recovery softening process coexists with precipitation hardening. DSC study shows that the GP zone formation of the hybrid composites is suppressed.
基金supported by the National Natural Science Foundation of China(Nos.51705249, 52075255)the China Postdoctoral Science Foundation (No.2019M661823)
文摘Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.
基金Funded by the National Natural Science Foundation of China(No.50232020) and Fund of State Key Lab of Advanced Technologyfor Materials Synthesis and Processing ( WUT2004M04)
文摘SiCp/ Al composites containing high volume fraction of SiC particles were fabricated by spark plasma sintering (SPS). and their thermophysical properties, such as thermal conductivity (TC) and co.lent of thermal expansion (CTE), were characterized. The electric field in the vacuum column was calculated and the generation condition of the spark was analyzed. Spark can be generated by a low current if the cavity in the green body is large enough. A high relative density of the composites was successfully achieved through the optimization of sintering parameters. The measured TCs of the SiCp/ Al composites fabricated by SPS are higher than 195 W/m ·K.
基金the National Natural Science Foundation of China under grant No.50175004
文摘Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).
文摘A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.
基金Funded by the China Aerospace Science&Industry Corp
文摘SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.
基金Project(0450100) supported by the Natural Science Foundation of Jiangxi ProvinceProject(2006[167]) supported by the Ministry of Education in Jiangxi Province, China
文摘SiCp/1060Al, SiCp/ZL101,SiCp/ZL102 composites with SiCp volume fraction of 55% were fabricated by pressureless infiltration. The microstructure was examined and thermal properties were characterized for SiCp/Al composites. The results show that the composites are dense and macroscopically homogeneous. With the increase of temperature, the mean linear coefficient of thermal expansion(CTE) at 25-200℃of the composites increases and ranges from 7.23×10-6 to 10.4×10-6K-1, but thermal conductivity declines gradually at the same time. With the increase of Si content in the Al matrix, CTE of the composites declines and thermal conductivity also declines but not linearly, when Si content is up to 7%, the average thermal conductivity is 140.4 W/(m·K), which is close to that of the SiCp/1060Al composite (144.6 W/(m·K)). While Si content is 11.7%, the average thermal conductivity declines markedly to 87.74 W/(m·K). The annealing treatment is better than the solution aging treatment in reducing CTE and improving thermal conductivity of the composites. Compared with conventional thermal management materials, SiCp/Al composites are potential candidate materials for advanced electronic packaging due to their tailorable thermo-physical properties.
文摘Unidirectional Tungsten filament (W_f) reinforced pure Al,Al-6Ti-6Nb and SiC_p-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical properties were investigated. It was indicated that no reaction products appeared at W_f/Al interfaces in pure Al matrix composites. While, in W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb,intermetallic WAl_4 interfacial reaction products formed. Much better strengthening effect from W filament was shown in the W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb composites than in the pure Al matrix composite. Their strength reached 319 and 339MPa, respectively, with only a small content of W_f(<5Vol.%). The excellent reinforcement effects could be predominantly attributed to the strong W_f/Al interfacial bonding strength due to the interfacial reaction.
文摘Aluminium metal matrix composite is a relatively new material that has proved its position in automobile, aerospace and other engineering design applications due to its wear resistance and substantial hardness. Need for improved tribological performance has led to the design and selection of newer variants of the composite. The present investigation deals with the study of wear behaviour of Al-SiCp metal matrix composite for varying reinforcement content, applied load, sliding speed and time. Aluminium metal matrix composites reinforced with SiC particles are prepared by liquid metallurgy route using LM6 aluminium alloy and silicon carbide particles (size ~ 37 μm) by varying the weight fraction of SiC in the range of 5% - 10%. The material is synthesized by stir casting process in an electric melting furnace. The materials are then subjected to wear testing in a multitribotester using block on roller configuration. A plan of experiments based on L27 Taguchi orthogonal array is used to acquire the wear data in a controlled way. An analysis of variance is employed to investigate the influence of four controlling parameters, viz., SiC content, normal load, sliding speed and sliding time on dry sliding wear of the composites. It is observed that SiC content, sliding speed and normal load significantly affect the dry sliding wear. The optimal combination of the four controlling parameters is also obtained for minimum wear. The microstructure study of worn surfaces indicates nature of wear to be mostly abrasive.
基金Projects (51101043, 50801017, 51001036) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.201130) supported by the Fundamental Research Funds for the Central Universities, China
文摘SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.