SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an ...SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.展开更多
Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discha...Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discharge machining (WEDM) process for machining SiCp rein forced ZC63 metal matrix composites (MMCs) is investi gated in this work. The WEDM is proven better for its efficiency to machine MMCs among others, while the particulate size and volume percentage of SiCp with the composite are the utmost important factors. These improve the mechanical properties enormously, however reduce the machining performance. Hence the WEDM experiments are conducted by varying the particulate size, volume fraction, pulseon time, pulseoff time and wire tension. In the view of quality cut, the most important performance indicators of WEDM as surface roughness (Ra), metal removal rate (MRR), wire wear ratio (WWR), kerf (Kw) and white layer thickness (WLT) are measured as respon ses. PCA is used as multiresponse optimization technique to derive the composite principal component (CPC) which acts as the overall quality index in the process. Consequently, Taguchi's S/N ratio analysis is applied to optimize the CPC. The derived optimal process responses are confirmed by the experimental validation tests results. The analysis of vari ance is conducted to find the effects of choosing process variables on the overall quality of the machined component.The practical possibility of the derived optimal process conditions is also presented using SEM.展开更多
基金Projects (51101043, 50801017, 51001036) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.201130) supported by the Fundamental Research Funds for the Central Universities, China
文摘SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases.
基金National Natural Science Foundation of China(51201006,51071057,51251201112,5140114)Natural Science Foundation of Shanxi(201601D011034,2015021067)+1 种基金Projects of International Cooperation in Shanxi(2014081002)the"111 Project"(B12012)
文摘Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discharge machining (WEDM) process for machining SiCp rein forced ZC63 metal matrix composites (MMCs) is investi gated in this work. The WEDM is proven better for its efficiency to machine MMCs among others, while the particulate size and volume percentage of SiCp with the composite are the utmost important factors. These improve the mechanical properties enormously, however reduce the machining performance. Hence the WEDM experiments are conducted by varying the particulate size, volume fraction, pulseon time, pulseoff time and wire tension. In the view of quality cut, the most important performance indicators of WEDM as surface roughness (Ra), metal removal rate (MRR), wire wear ratio (WWR), kerf (Kw) and white layer thickness (WLT) are measured as respon ses. PCA is used as multiresponse optimization technique to derive the composite principal component (CPC) which acts as the overall quality index in the process. Consequently, Taguchi's S/N ratio analysis is applied to optimize the CPC. The derived optimal process responses are confirmed by the experimental validation tests results. The analysis of vari ance is conducted to find the effects of choosing process variables on the overall quality of the machined component.The practical possibility of the derived optimal process conditions is also presented using SEM.