This paper reviews the basic properties of the SiGe alloy, presents some new results on its electronic and optical properties, and discusses the approach that has been followed to model quantum wells containing SiGe l...This paper reviews the basic properties of the SiGe alloy, presents some new results on its electronic and optical properties, and discusses the approach that has been followed to model quantum wells containing SiGe layers for applications in quantum cascade lasers. The shape of the confining potential, the subband energies and their eigen envelope wave functions are calculated by solving a one-dimensional Schr?dinger equation. The calculations of optical parameters are used to optimize the Si/SiGe quantum cascade structures. Our results are found to be in good agreement with other calculations.展开更多
Sn-doped Ge2Sb2Te5 thin films deposited on Si(100)/SiO2 substrates by rf magnetron sputtering are investigated by a differential scanning calorimeter, x-ray diffraction and sheet resistance measurement. The crystall...Sn-doped Ge2Sb2Te5 thin films deposited on Si(100)/SiO2 substrates by rf magnetron sputtering are investigated by a differential scanning calorimeter, x-ray diffraction and sheet resistance measurement. The crystallization temperatures of the 3.58 at.%, 6.92 at.% and 10.04 at.% Sn-doped Ge2Sb2Te5 thin films have decreases of 5.3, 6.1 and 0.9℃, respectively, which is beneficial to reduce the switching current for the amorphous-to-crystalline phase transition. Due to Sn-doping, the sheet resistance of crystalline Ge2Sb2Te5 thin films increases about 2-10 times, which may be useful to reduce the switching current for the amorphous-to-crystalline phase change. In addition, an obvious decreasing dispersibility for the sheet resistance of Sn-doped Ge2Sb2Te5 thin films in the crystalline state has been observed, which can play an important role in minimizing resistance difference for the phase-change memory cell element arrays.展开更多
文摘This paper reviews the basic properties of the SiGe alloy, presents some new results on its electronic and optical properties, and discusses the approach that has been followed to model quantum wells containing SiGe layers for applications in quantum cascade lasers. The shape of the confining potential, the subband energies and their eigen envelope wave functions are calculated by solving a one-dimensional Schr?dinger equation. The calculations of optical parameters are used to optimize the Si/SiGe quantum cascade structures. Our results are found to be in good agreement with other calculations.
文摘Sn-doped Ge2Sb2Te5 thin films deposited on Si(100)/SiO2 substrates by rf magnetron sputtering are investigated by a differential scanning calorimeter, x-ray diffraction and sheet resistance measurement. The crystallization temperatures of the 3.58 at.%, 6.92 at.% and 10.04 at.% Sn-doped Ge2Sb2Te5 thin films have decreases of 5.3, 6.1 and 0.9℃, respectively, which is beneficial to reduce the switching current for the amorphous-to-crystalline phase transition. Due to Sn-doping, the sheet resistance of crystalline Ge2Sb2Te5 thin films increases about 2-10 times, which may be useful to reduce the switching current for the amorphous-to-crystalline phase change. In addition, an obvious decreasing dispersibility for the sheet resistance of Sn-doped Ge2Sb2Te5 thin films in the crystalline state has been observed, which can play an important role in minimizing resistance difference for the phase-change memory cell element arrays.