Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 ...Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25,12.5,and 25.0 mg of SNs or 25.0 mg of microscale SiO_2 particles suspensions for 30 d,were then sacrificed.Histopathological and ultrastructural change in lungs,and chemical components in the urine excretions were investigated by light microscope,TEM and EDS.MDA,NO and hydroxyproline(Hyp) in lung homogenates were quantified by spectrophotometry.Contents of TNF-α,TGF-β1,IL-1β,and MMP-2 in lung tissue were determined by immunohistochemistry staining.Results There is massive excretion of Si substance in urine.The SNs lead pulmonary lesions of rise in lung/body coefficients,lung inflammation,damaged alveoli,granuloma nodules formation,and collagen metabolized perturbation,and lung tissue damage is milder than those of microscale SiO_2 particles.The SNs also cause increase lipid peroxidation and high expression of cytokines.Conclusion The SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines.Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO_2 particles is contributed to its elimination from urine due to their ultrafine particle size.展开更多
Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepar...Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepared by the water-in-oil(W/O) microemulsion method, and were characterized by transmission electron microscopy(TEM). The core-shell structure TTF@ SiO2 could prevent TIT from leaching out into an aqueous solution. Combined with chitosan (CHIT), which serves as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@ SiO2- CHIT-GOx biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0 × 10^-5 5 × 10^-3 mol/L with a detection limit down to 5.0 μmol/L(S/N = 3 ). The excellent selectivity, sensitivity, and stability of the glucose biosensor show its potential for practical applications.展开更多
The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis r...The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.展开更多
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
The health effects of ambient PM 2.5 and its potential mechanisms have generated considerable interest.In vitro cell studies and ex vivo animal experiments may not accurately determine the characteristics of PM 2.5 pa...The health effects of ambient PM 2.5 and its potential mechanisms have generated considerable interest.In vitro cell studies and ex vivo animal experiments may not accurately determine the characteristics of PM 2.5 particles.To better understand their detailed mechanisms,we performed an in vivo study using single photon emission tomography(SPECT)imaging.To mimic the PM 2.5 particles,SiO2 nanoparticles modified by ethylene carbonate or polyvinyl pyrrolidone were labeled with 131I.After administration via inhalation,in vivo SPECT imaging of the radiolabeled particles in sprague dawley rats was performed.It was found that radioactivity accumulated in the lungs and trachea 6 and 24 h after administration.In addition,significant radioactivity was observed in the abdomen,including the liver and kidneys.The results were also confirmed by ex vivo autoradiography.This study revealed that in vivo SPECT imaging could be an effective method for investigating the properties of PM 2.5 particles.展开更多
A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC...A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC) reaction as well as the subsequent chemiluminescence (CL) reaction not only could be separated spatially, but also presented high efficiency for analytical purpose. In this case, the core-shell luminol-based SiO2 nanoparticles offered more potential to avoid the contradiction between the EC and the CL reaction conditions. A new ECL method based on the nanoparticle was developed, and isoniazid was selected as a model analyte to illustrate the characteristics of this new ECL method. Under the selected conditions, the proposed ECL response to isoniazid concentration was linear in the range of 1.0 ×10^-10 to 1.0 × 10^-6 g/mL with 2 × 10^-11g/mL detection limit.展开更多
We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monit...We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.展开更多
An antireflection (AR) coating is fabricated by applying an optimal spin-coating method and a pH-modified SiO2 nanoparticle solution on a cover glass. Because the pH value of the solution will affect the aggregation...An antireflection (AR) coating is fabricated by applying an optimal spin-coating method and a pH-modified SiO2 nanoparticle solution on a cover glass. Because the pH value of the solution will affect the aggregation and dispersion of the SiO2 particles, the transmittance of the AR-treated cover glass will be enhanced under optimal fabricated conditions. The experimental results show that an AR coating fabricated by an SiO2 nano- particle solution of pH 11 enhances the transmittance approximately by 3% and 5% under normal and oblique incident conditions, respectively. Furthermore, the AR-treated cover glass exhibits hydrophobicity and shows a 65% enhancement at a contact angle to bare glass.展开更多
A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution i...A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution is investigated using the dynamic tight scattering (DLS) and isothermal titration calorimetry (ITC) techniques. The DLS results show qualitatively that SiO2 nanoparticles interact with both random coils and aggregates of PEO through hydrogen bonding, and PEO-SiO2 complexes are formed. The degree of disaggregation of aggregates of PEO is readily adjusted by changing the concentration of SiO2 nanoparticle suspensions. Moreover, the ITC results also certify quantitatively the interaction between PEO and SiO2 nanoparticle, and give the evidence of formation of PEO-SiO2 complex.展开更多
In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic...In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.展开更多
ABSTRACT The efficient detection of tumor markers is crucial to early cancer diagnosis and monitoring.Here,we propose a unique“two birds with one stone”dissolution-enhanced afterglow bioassay based on amino-function...ABSTRACT The efficient detection of tumor markers is crucial to early cancer diagnosis and monitoring.Here,we propose a unique“two birds with one stone”dissolution-enhanced afterglow bioassay based on amino-functionalized mesoporous SiO2 nanoparticles(MSNs-NH2)encapsulated Eu(OH)CO_(3)nanoprobes.These nanoprobes(i)stably conjugate to the antibody and(ii)are highly soluble in the acidic enhancer solution,and provide a high Eu3+concentration.The released Eu3+ions further activate the photochemical afterglow system to determine the alpha-fetoprotein(AFP)levels in clinical serum samples.Without the use of a real-time excitation source,the interference of autofluorescence and scattering from blood can be avoided.The demonstrated limit of detection(LOD)for AFP was as low as 0.12 ng·mL^(−1).This covalently connected dissolution-enhanced luminescent bioassay(DELBA)and novel afterglow system shows tremendous potential for ultrasensitive and rapid clinical diagnosis.展开更多
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
基金supported by the National Natural Science Foundation of China(Grant No.81273046)the Fundamental Research Funds for the Central Universitiesthe Preventive Medicine Research Projects of Jiangsu Province(Grant No.Y2012039)
文摘Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25,12.5,and 25.0 mg of SNs or 25.0 mg of microscale SiO_2 particles suspensions for 30 d,were then sacrificed.Histopathological and ultrastructural change in lungs,and chemical components in the urine excretions were investigated by light microscope,TEM and EDS.MDA,NO and hydroxyproline(Hyp) in lung homogenates were quantified by spectrophotometry.Contents of TNF-α,TGF-β1,IL-1β,and MMP-2 in lung tissue were determined by immunohistochemistry staining.Results There is massive excretion of Si substance in urine.The SNs lead pulmonary lesions of rise in lung/body coefficients,lung inflammation,damaged alveoli,granuloma nodules formation,and collagen metabolized perturbation,and lung tissue damage is milder than those of microscale SiO_2 particles.The SNs also cause increase lipid peroxidation and high expression of cytokines.Conclusion The SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines.Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO_2 particles is contributed to its elimination from urine due to their ultrafine particle size.
基金Supported by the National Natural Science Foundation of China(No. 20305007) and Doctoral Foundation of China Ministry ofEducation(No. 20030269014)
文摘Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepared by the water-in-oil(W/O) microemulsion method, and were characterized by transmission electron microscopy(TEM). The core-shell structure TTF@ SiO2 could prevent TIT from leaching out into an aqueous solution. Combined with chitosan (CHIT), which serves as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@ SiO2- CHIT-GOx biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0 × 10^-5 5 × 10^-3 mol/L with a detection limit down to 5.0 μmol/L(S/N = 3 ). The excellent selectivity, sensitivity, and stability of the glucose biosensor show its potential for practical applications.
基金supported by research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE201127)
文摘The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
基金supported by the National Natural Science Foundation of China(Nos.31671035,51803082)National Significant New Drugs Creation Program(No.2017ZX09304021)+1 种基金Jiangsu Province Foundation(Nos.BK20170204,BK20161137)Jiangsu Provincial Medical Innovation Team(Nos.CXTDA2017024,LGY2017088,QNRC2016628)。
文摘The health effects of ambient PM 2.5 and its potential mechanisms have generated considerable interest.In vitro cell studies and ex vivo animal experiments may not accurately determine the characteristics of PM 2.5 particles.To better understand their detailed mechanisms,we performed an in vivo study using single photon emission tomography(SPECT)imaging.To mimic the PM 2.5 particles,SiO2 nanoparticles modified by ethylene carbonate or polyvinyl pyrrolidone were labeled with 131I.After administration via inhalation,in vivo SPECT imaging of the radiolabeled particles in sprague dawley rats was performed.It was found that radioactivity accumulated in the lungs and trachea 6 and 24 h after administration.In addition,significant radioactivity was observed in the abdomen,including the liver and kidneys.The results were also confirmed by ex vivo autoradiography.This study revealed that in vivo SPECT imaging could be an effective method for investigating the properties of PM 2.5 particles.
基金Project supported by the National Natural Science Foundation of China (No. 2057040).
文摘A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC) reaction as well as the subsequent chemiluminescence (CL) reaction not only could be separated spatially, but also presented high efficiency for analytical purpose. In this case, the core-shell luminol-based SiO2 nanoparticles offered more potential to avoid the contradiction between the EC and the CL reaction conditions. A new ECL method based on the nanoparticle was developed, and isoniazid was selected as a model analyte to illustrate the characteristics of this new ECL method. Under the selected conditions, the proposed ECL response to isoniazid concentration was linear in the range of 1.0 ×10^-10 to 1.0 × 10^-6 g/mL with 2 × 10^-11g/mL detection limit.
基金Supported by the National Natural Science Foundation of China(Nos.20873050,20921003,20973074,20903044)the "111" Project(No.B06009)the Key Projects in the National Science & Technology Pillar Program,China(No.2007BAI38B03)
文摘We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.
基金financially supporting this research under Contract No. NSC 102-2221-E-155-076-MY3
文摘An antireflection (AR) coating is fabricated by applying an optimal spin-coating method and a pH-modified SiO2 nanoparticle solution on a cover glass. Because the pH value of the solution will affect the aggregation and dispersion of the SiO2 particles, the transmittance of the AR-treated cover glass will be enhanced under optimal fabricated conditions. The experimental results show that an AR coating fabricated by an SiO2 nano- particle solution of pH 11 enhances the transmittance approximately by 3% and 5% under normal and oblique incident conditions, respectively. Furthermore, the AR-treated cover glass exhibits hydrophobicity and shows a 65% enhancement at a contact angle to bare glass.
基金supported by the National Natural Science Foundation of China (Nos: 50621302, 50921062)
文摘A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution is investigated using the dynamic tight scattering (DLS) and isothermal titration calorimetry (ITC) techniques. The DLS results show qualitatively that SiO2 nanoparticles interact with both random coils and aggregates of PEO through hydrogen bonding, and PEO-SiO2 complexes are formed. The degree of disaggregation of aggregates of PEO is readily adjusted by changing the concentration of SiO2 nanoparticle suspensions. Moreover, the ITC results also certify quantitatively the interaction between PEO and SiO2 nanoparticle, and give the evidence of formation of PEO-SiO2 complex.
基金financially supported by the National Natural Science Foundation of China (No. 51473031)Shanghai International S&T Cooperation Fund (No. 16160731302)。
文摘In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.
基金National Key R&D Program of China(No.2017YFA0205100)the National Natural Science Foundation of China(No.22101052)for financial support.
文摘ABSTRACT The efficient detection of tumor markers is crucial to early cancer diagnosis and monitoring.Here,we propose a unique“two birds with one stone”dissolution-enhanced afterglow bioassay based on amino-functionalized mesoporous SiO2 nanoparticles(MSNs-NH2)encapsulated Eu(OH)CO_(3)nanoprobes.These nanoprobes(i)stably conjugate to the antibody and(ii)are highly soluble in the acidic enhancer solution,and provide a high Eu3+concentration.The released Eu3+ions further activate the photochemical afterglow system to determine the alpha-fetoprotein(AFP)levels in clinical serum samples.Without the use of a real-time excitation source,the interference of autofluorescence and scattering from blood can be avoided.The demonstrated limit of detection(LOD)for AFP was as low as 0.12 ng·mL^(−1).This covalently connected dissolution-enhanced luminescent bioassay(DELBA)and novel afterglow system shows tremendous potential for ultrasensitive and rapid clinical diagnosis.