High-k materials as an alternative dielectric layer for SiC power devices have the potential to reduce interfacial state defects and improve MOS channel conduction capability.Besides,under identical conditions of gate...High-k materials as an alternative dielectric layer for SiC power devices have the potential to reduce interfacial state defects and improve MOS channel conduction capability.Besides,under identical conditions of gate oxide thickness and gate voltage,the high-k dielectric enables a greater charge accumulation in the channel region,resulting in a larger number of free electrons available for conduction.However,the lower energy band gap of high-k materials leads to significant leakage currents at the interface with Si C,which greatly affects device reliability.By inserting a layer of SiO_(2)between the high-k material and Si C,the interfacial barrier can be effectively widened and hence the leakage current will be reduced.In this study,the optimal thickness of the intercalated SiO_(2)was determined by investigating and analyzing the gate dielectric breakdown voltage and interfacial defects of a dielectric stack composed of atomic-layer-deposited Al_(2)O_(3)layer and thermally nitride SiO_(2).Current-voltage and high-frequency capacitance-voltage measurements were performed on metal-oxide-semiconductor test structures with 35 nm thick Al_(2)O_(3)stacked on 1 nm,2 nm,3 nm,6 nm,or 9 nm thick nitride SiO_(2).Measurement results indicated that the current conducted through the oxides was affected by the thickness of the nitride oxide and the applied electric field.Finally,a saturation thickness of stacked SiO_(2)that contributed to dielectric breakdown and interfacial band offsets was identified.The findings in this paper provide a guideline for the SiC gate dielectric stack design with the breakdown strength and the interfacial state defects considered.展开更多
Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as a high-k gate dielectric grown on 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper. The metal-insulation-semico...Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as a high-k gate dielectric grown on 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper. The metal-insulation-semiconductor (MIS) capacitors, respectively with different gate dielectric stacks (Al2O3/SiO2, Al2O3, and SiO2) are fabricated and compared with each other. The I-V measurements show that the Al2O3/SiO2 stack has a high breakdown field (≥12 MV/cm) comparable to SiO2, and a relatively low gate leakage current of 1 × 10-7 A/cm2 at an electric field of 4 MV/cm comparable to Al2O3. The 1-MHz high frequency C-V measurements exhibit that the Al2O3/SiO2 stack has a smaller positive flat-band voltage shift and hysteresis voltage, indicating a less effective charge and slow-trap density near the interface.展开更多
A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acid...A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acidity of SO 2- 4/TiO 2 catalyst and its photocatalytic property for degradation of bromomethane was studied. The results showed that the specific surface area and amount of oxygen adsorption of catalyst were increased by addition of SiO 2, leading to the obvious increase on photocatalytic activity of SO 2- 4/TiO 2 SiO 2 catalysts and mineralization ratio of bromomethane. Comparing with SO 2- 4/TiO 2, the acidic strength and anti moisture ability of SO 2- 4/TiO 2 SiO 2 catalyst were decreased.展开更多
基金Project supported by the Key Area Research and Development Program of Guangdong Province of China(Grant No.2021B0101300005)the National Key Research and Development Program of China(Grant No.2021YFB3401603)。
文摘High-k materials as an alternative dielectric layer for SiC power devices have the potential to reduce interfacial state defects and improve MOS channel conduction capability.Besides,under identical conditions of gate oxide thickness and gate voltage,the high-k dielectric enables a greater charge accumulation in the channel region,resulting in a larger number of free electrons available for conduction.However,the lower energy band gap of high-k materials leads to significant leakage currents at the interface with Si C,which greatly affects device reliability.By inserting a layer of SiO_(2)between the high-k material and Si C,the interfacial barrier can be effectively widened and hence the leakage current will be reduced.In this study,the optimal thickness of the intercalated SiO_(2)was determined by investigating and analyzing the gate dielectric breakdown voltage and interfacial defects of a dielectric stack composed of atomic-layer-deposited Al_(2)O_(3)layer and thermally nitride SiO_(2).Current-voltage and high-frequency capacitance-voltage measurements were performed on metal-oxide-semiconductor test structures with 35 nm thick Al_(2)O_(3)stacked on 1 nm,2 nm,3 nm,6 nm,or 9 nm thick nitride SiO_(2).Measurement results indicated that the current conducted through the oxides was affected by the thickness of the nitride oxide and the applied electric field.Finally,a saturation thickness of stacked SiO_(2)that contributed to dielectric breakdown and interfacial band offsets was identified.The findings in this paper provide a guideline for the SiC gate dielectric stack design with the breakdown strength and the interfacial state defects considered.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61006060 and 61176070).
文摘Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as a high-k gate dielectric grown on 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper. The metal-insulation-semiconductor (MIS) capacitors, respectively with different gate dielectric stacks (Al2O3/SiO2, Al2O3, and SiO2) are fabricated and compared with each other. The I-V measurements show that the Al2O3/SiO2 stack has a high breakdown field (≥12 MV/cm) comparable to SiO2, and a relatively low gate leakage current of 1 × 10-7 A/cm2 at an electric field of 4 MV/cm comparable to Al2O3. The 1-MHz high frequency C-V measurements exhibit that the Al2O3/SiO2 stack has a smaller positive flat-band voltage shift and hysteresis voltage, indicating a less effective charge and slow-trap density near the interface.
文摘A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acidity of SO 2- 4/TiO 2 catalyst and its photocatalytic property for degradation of bromomethane was studied. The results showed that the specific surface area and amount of oxygen adsorption of catalyst were increased by addition of SiO 2, leading to the obvious increase on photocatalytic activity of SO 2- 4/TiO 2 SiO 2 catalysts and mineralization ratio of bromomethane. Comparing with SO 2- 4/TiO 2, the acidic strength and anti moisture ability of SO 2- 4/TiO 2 SiO 2 catalyst were decreased.