To alleviate catalytic coking on the inner surface of radiant tube for ethylene production in petrochemical plants,SiO2/S coatings were deposited on HP40 alloy specimens using dimethyldisulfide (DMDS) and tetraethox...To alleviate catalytic coking on the inner surface of radiant tube for ethylene production in petrochemical plants,SiO2/S coatings were deposited on HP40 alloy specimens using dimethyldisulfide (DMDS) and tetraethoxysilane (TEOS) by atmospheric pressure chemical vapor deposition (APCVD). A two-dimension mathematical model was made to predict the growth rate of SiO2/S coating and to study the effects of deposition parameters on the deposition rate. The results show that the predicted deposition rate is in good agreement with the experimental one. The deposition rate mainly depends on the concentrations of precursors in the total gas flow, concentrations of intermediates on the deposition surface, total gas flow rate and deposition temperature. The weight of SiO2/S coating linearly increases with the deposition time. When the gas flow rate is below 0.3 m/s, the rate-limiting step of SiO2/S coating deposition is the diffusions of intermediates.However, the surface reactions of intermediates will be the rate-limiting step after the gas flow rate is above 0.3 m/s. When the deposition temperature is below 780℃, the rate-limiting step of SiO2/S coating deposition mainly depends on the surface reactions of intermediates. When the deposition temperature is above 780℃,the rate-limiting step depends on the diffusions of intermediates. The deposition rate increases with increasing the concentrations of the intermediates. However, when the partial pressures of the intermediates reach 8 Pa,the deposition rate keeps constant.展开更多
A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on t...A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on the Na-W-Mn-Zr/SiO2 catalyst. The catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). From the characterization results, it is found that the addition of S and P to the Na-W-Mn-ZffSiO2 catalyst helps the formation of active phases, such as α-cristobalite, Na2WO4, ZrO2, and Na2SO4. Moreover, the addition of S and P increases the concentration of surface-active oxygen species by improving the migration of active components from the bulk phase to the surface of the catalyst. According to the activity test, impressive methane conversion and C2 hydrocarbons yield were obtained at a low temperature of 1023 K over the six-component Na-W-Mn-Zr-S-P/SiO2 catalyst, which contained 2 wt% S and 0.4 wt% P simultaneously. The deactivation of Na-W-Mn-Zr-S-P/SiO2 was due to the loss of surface active components.展开更多
Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the be...Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples. In addition, the effects of different addition sequences of Na, W, Mn, Zr, S and P on the catalytic performance were studied. The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn2O3 and ZrO2 and decreased the activities of the catalysts significantly.展开更多
SiO2/S coating was prepared on the inner surface of an HP40 tube using dimethyldisulfide and tetraethylorthosilicate by atmospheric pressure chemical vapor deposition(APCVD) to alleviate catalytic coking on the inner ...SiO2/S coating was prepared on the inner surface of an HP40 tube using dimethyldisulfide and tetraethylorthosilicate by atmospheric pressure chemical vapor deposition(APCVD) to alleviate catalytic coking on the inner surface of radiant tube for ethylene production in petrochemical plants.The comparative coking experiments with the coated and uncoated HP40 tubes were carried out under the same cracking conditions.SiO2/S coating was compact and had excellent anti-coking property.The coke on the coated HP40 tube was about 22% of that on the uncoated HP40 tube,and only small granular coke was deposited on the coated HP40 tube.However,the filamentous coke formed on the uncoated HP40 tube.The thermal stability of SiO2/S coating was satisfactory at cracking temperature,and the anti-coking property of SiO2/S coating was still over 60% after 3 coking and decoking cycles.展开更多
文摘To alleviate catalytic coking on the inner surface of radiant tube for ethylene production in petrochemical plants,SiO2/S coatings were deposited on HP40 alloy specimens using dimethyldisulfide (DMDS) and tetraethoxysilane (TEOS) by atmospheric pressure chemical vapor deposition (APCVD). A two-dimension mathematical model was made to predict the growth rate of SiO2/S coating and to study the effects of deposition parameters on the deposition rate. The results show that the predicted deposition rate is in good agreement with the experimental one. The deposition rate mainly depends on the concentrations of precursors in the total gas flow, concentrations of intermediates on the deposition surface, total gas flow rate and deposition temperature. The weight of SiO2/S coating linearly increases with the deposition time. When the gas flow rate is below 0.3 m/s, the rate-limiting step of SiO2/S coating deposition is the diffusions of intermediates.However, the surface reactions of intermediates will be the rate-limiting step after the gas flow rate is above 0.3 m/s. When the deposition temperature is below 780℃, the rate-limiting step of SiO2/S coating deposition mainly depends on the surface reactions of intermediates. When the deposition temperature is above 780℃,the rate-limiting step depends on the diffusions of intermediates. The deposition rate increases with increasing the concentrations of the intermediates. However, when the partial pressures of the intermediates reach 8 Pa,the deposition rate keeps constant.
基金supported by the National Natural Science Foundation of China (20676116)
文摘A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on the Na-W-Mn-Zr/SiO2 catalyst. The catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). From the characterization results, it is found that the addition of S and P to the Na-W-Mn-ZffSiO2 catalyst helps the formation of active phases, such as α-cristobalite, Na2WO4, ZrO2, and Na2SO4. Moreover, the addition of S and P increases the concentration of surface-active oxygen species by improving the migration of active components from the bulk phase to the surface of the catalyst. According to the activity test, impressive methane conversion and C2 hydrocarbons yield were obtained at a low temperature of 1023 K over the six-component Na-W-Mn-Zr-S-P/SiO2 catalyst, which contained 2 wt% S and 0.4 wt% P simultaneously. The deactivation of Na-W-Mn-Zr-S-P/SiO2 was due to the loss of surface active components.
基金supported by the financial support from National Natural Science Foundation of China (20676116)
文摘Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples. In addition, the effects of different addition sequences of Na, W, Mn, Zr, S and P on the catalytic performance were studied. The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn2O3 and ZrO2 and decreased the activities of the catalysts significantly.
文摘SiO2/S coating was prepared on the inner surface of an HP40 tube using dimethyldisulfide and tetraethylorthosilicate by atmospheric pressure chemical vapor deposition(APCVD) to alleviate catalytic coking on the inner surface of radiant tube for ethylene production in petrochemical plants.The comparative coking experiments with the coated and uncoated HP40 tubes were carried out under the same cracking conditions.SiO2/S coating was compact and had excellent anti-coking property.The coke on the coated HP40 tube was about 22% of that on the uncoated HP40 tube,and only small granular coke was deposited on the coated HP40 tube.However,the filamentous coke formed on the uncoated HP40 tube.The thermal stability of SiO2/S coating was satisfactory at cracking temperature,and the anti-coking property of SiO2/S coating was still over 60% after 3 coking and decoking cycles.