The diffusion barrier Ni-Mo-P film for Cu interconnects was prepared on SiO2/Si substrate using electroless method. The surface morphology and composition during the formation process of electroless Ni-Mo-P film were ...The diffusion barrier Ni-Mo-P film for Cu interconnects was prepared on SiO2/Si substrate using electroless method. The surface morphology and composition during the formation process of electroless Ni-Mo-P film were investigated through analyzing samples of different deposition time. Induced nucleation, induced co-deposition, and self-induced growth mechanisms involved in electroless process were confirmed by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry and atomic force microscopy (AFM). Firstly, the preceding palladium particles as catalysts induce the nucleation of nickel. Secondly, the nickel particles induce the deposition of molybdenum and phosphorus, which attributes to induced co-deposition. Thirdly, former deposited Ni-Mo-P induces deposition of the latter Ni-Mo-P particles. Moreover, the reaction mechanism was proposed with the oxydate of 3-4PO .展开更多
Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Her...Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.展开更多
采用全矢量交替方向隐含迭代方法系统分析了高折射率 Si ON薄膜对 Si基 Si O2 阵列波导光栅中波导应力双折射的影响 .分析结果表明在芯区上或下表面沉积 Si ON薄膜可以明显减小 Si基 Si O2 阵列波导光栅 (AWG)中波导的应力双折射 ,但这...采用全矢量交替方向隐含迭代方法系统分析了高折射率 Si ON薄膜对 Si基 Si O2 阵列波导光栅中波导应力双折射的影响 .分析结果表明在芯区上或下表面沉积 Si ON薄膜可以明显减小 Si基 Si O2 阵列波导光栅 (AWG)中波导的应力双折射 ,但这两种补偿方法容易使模场偏移中心位置 ,不利于波导与光纤的耦合 .理想的补偿方法是在芯区上下同时补偿 ,可减小模场偏移 ,并用该方法设计了偏振无关的 1 6通道 AWG.展开更多
文摘The diffusion barrier Ni-Mo-P film for Cu interconnects was prepared on SiO2/Si substrate using electroless method. The surface morphology and composition during the formation process of electroless Ni-Mo-P film were investigated through analyzing samples of different deposition time. Induced nucleation, induced co-deposition, and self-induced growth mechanisms involved in electroless process were confirmed by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry and atomic force microscopy (AFM). Firstly, the preceding palladium particles as catalysts induce the nucleation of nickel. Secondly, the nickel particles induce the deposition of molybdenum and phosphorus, which attributes to induced co-deposition. Thirdly, former deposited Ni-Mo-P induces deposition of the latter Ni-Mo-P particles. Moreover, the reaction mechanism was proposed with the oxydate of 3-4PO .
基金supported by National 863 Program 2011AA050518the Natural Science Foundation of China(Grant Nos.11174197,11574203,and 61234005)
文摘Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.