ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray...ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.展开更多
基金Project(2003AA332040) supported by the National High Technology Research and Development Program of China
文摘ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.