A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among b...A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among boron doping, chemical structure of precursors and durability of hydrophobic coatings was discussed. The Si-O-B and methyl groups were successfully introduced in the gel precursors according to the FT-IR and XPS results. The resins were filled in the internal and surface holes of the SiO2f/SiO2 composites partially or completely, which is beneficial to reduce the physical adsorption of the moisture. In addition, hydroxyl groups of the SiO2f/SiO2 composites reacted with the resins and hydrophobic methyl groups were introduced, leading to the reduction of the chemical adsorption of water. Also, the boron doping was beneficial to enhancing the physical cross-linking between the coating and the SiO2f/SiO2 composites, and improved the adhesion of the coating to the substrate. The results show that the optimal hydrophobic coating with contact angle 130.33°, moisture absorption 0.33% and adhesion level 1 is obtained when the molar ratio of MTES to B(OH)3 is 10:4. The real permittivity of M10B4 is constant in the range of 2.32–2.51 and the dielectric tangent loss is constant in the range of 5.5 × 10-4–8.7 × 10-3. The hydrophobic coating has excellent dielectric properties.展开更多
The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmissi...The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.展开更多
In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Comp...In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.展开更多
Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ...Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.展开更多
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
Three compositions of Ag-Cu-In-Ti system brazing alloys were designed for joining SiO2 f/SiO2 ceramic composite to Nb metal.The wettability of the three alloys on the composite was studied with the sessile drop method...Three compositions of Ag-Cu-In-Ti system brazing alloys were designed for joining SiO2 f/SiO2 ceramic composite to Nb metal.The wettability of the three alloys on the composite was studied with the sessile drop method.The results showed that after heating at 1073 K for 30 min,they exhibited contact angles of 74°,83° and 86°,respectively.The brazing alloys were fabricated into foils by rapid solidification technique.Among the three brazing filler alloys the joints brazed with AgCu-10 In-5 Ti at 1073 K for 10 min presented the maximum average shear strength of 30.9 MPa.During the brazing process the active element Ti diffused strongly from the filler alloy to the composite surface and a reaction layer with a thickness of 2-3 μm was formed.Sound metallurgical bonding was also achieved at the Nb side.The interface structure of the joint brazed with the AgCu-10 In-5 Ti alloy can be described as the following sequence:SiO2 f/SiO2→SiO2+Cu3 Ti3 O→SiO2+TiO+Ti5 Si4→Ag(s,s)+(Cu-Ti)→Nb.However,for the filler alloy with 4.0 wt% Ti content the joint strength was only 15.8 MPa.展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
Ni-W-P matrix composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by means of pulse electrodeposition,and the high-temperature oxidation behavior was investigated.The result...Ni-W-P matrix composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by means of pulse electrodeposition,and the high-temperature oxidation behavior was investigated.The results show that when the oxidation time is controlled in 1 h,oxidation kinetics curve between oxidation mass gain rate and oxidation temperature of CeO2-SiO2/Ni-W-P composites accords with the index increasing law.When the oxidation temperature is controlled at 300℃,the kinetics curve between oxidation mass gain rate and oxidation time accords with the linear increasing law.The composites as-deposited are in the amorphous state and turn into the crystal state at 400℃.The microstructures of oxidation film on the composites will change from the compact state to the loose state with increasing oxidation temperature to 800℃.They are still continuous and compact,and there are no crackle,strip and falling-out.CeO2 and SiO2 nano-particles co-deposited into Ni-W-P alloy can improve the high-temperature oxidation resistance.展开更多
A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process ...A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100-900 ℃. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV...Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100-900 ℃. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV-visible spectra. Structural and magnetic characteristics were investigated through FT-IR and VSM. The transparency of the Fe2O3/SiO2 nano-composite films decreased with the content of the Fe2O3. Water and organic solvent in the films were evaporated with heat treatment, so the transparency of the films was enhanced under high temperature. It is also found that the saturation magnetization (Ms) of the films increases with the temperature. As the content of the Fe2O3 increases, when the content of the Fe2O3 is around 30wt%, the Ms of the films has a maximum value.展开更多
Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 co...Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.展开更多
基金supported by the Taishan Scholar Project(No.ts201511080)the National Natural Science Foundation of China(Nos.51672059,51172050,51102060 and 51302050)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(No.HIT.NSRIF.2014129)
文摘A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among boron doping, chemical structure of precursors and durability of hydrophobic coatings was discussed. The Si-O-B and methyl groups were successfully introduced in the gel precursors according to the FT-IR and XPS results. The resins were filled in the internal and surface holes of the SiO2f/SiO2 composites partially or completely, which is beneficial to reduce the physical adsorption of the moisture. In addition, hydroxyl groups of the SiO2f/SiO2 composites reacted with the resins and hydrophobic methyl groups were introduced, leading to the reduction of the chemical adsorption of water. Also, the boron doping was beneficial to enhancing the physical cross-linking between the coating and the SiO2f/SiO2 composites, and improved the adhesion of the coating to the substrate. The results show that the optimal hydrophobic coating with contact angle 130.33°, moisture absorption 0.33% and adhesion level 1 is obtained when the molar ratio of MTES to B(OH)3 is 10:4. The real permittivity of M10B4 is constant in the range of 2.32–2.51 and the dielectric tangent loss is constant in the range of 5.5 × 10-4–8.7 × 10-3. The hydrophobic coating has excellent dielectric properties.
基金This work was financially supported by the Foundation for University Key Teachers by the Ministry of Education, theKey Resear
文摘The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.
基金Supported by the funding from "135" Projects Fund of CAS-QIBEBT Director Innovation FoundationThink-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research+3 种基金Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technologythe Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010105)National Natural Science Foundation of China(51502319)Shandong Provincial Natural Science Foundation(ZR2016BQ18)
文摘In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.
基金Supported by the National Natural Science Foundation of China(21506078).
文摘Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
基金supported financially by the National Natural Science Foundation of China (Nos.5990522, 50475160, 51275497 and 5140105004)。
文摘Three compositions of Ag-Cu-In-Ti system brazing alloys were designed for joining SiO2 f/SiO2 ceramic composite to Nb metal.The wettability of the three alloys on the composite was studied with the sessile drop method.The results showed that after heating at 1073 K for 30 min,they exhibited contact angles of 74°,83° and 86°,respectively.The brazing alloys were fabricated into foils by rapid solidification technique.Among the three brazing filler alloys the joints brazed with AgCu-10 In-5 Ti at 1073 K for 10 min presented the maximum average shear strength of 30.9 MPa.During the brazing process the active element Ti diffused strongly from the filler alloy to the composite surface and a reaction layer with a thickness of 2-3 μm was formed.Sound metallurgical bonding was also achieved at the Nb side.The interface structure of the joint brazed with the AgCu-10 In-5 Ti alloy can be described as the following sequence:SiO2 f/SiO2→SiO2+Cu3 Ti3 O→SiO2+TiO+Ti5 Si4→Ag(s,s)+(Cu-Ti)→Nb.However,for the filler alloy with 4.0 wt% Ti content the joint strength was only 15.8 MPa.
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
基金Project(20806035)supported by the National Natural Science Foundation of ChinaProject(2007E187M)supported by the Applied Basic Research Plans Program of Yunnan Province,China+2 种基金Project supported by the Foundation for Leaders of Disciplines in Science and Technology of Yunnan Province,ChinaProject(08C0025)supported by the Scientific Research Fund of Yunnan Provincial Education Department,ChinaProject supported by the Training Foundation for Talents of Kunming University of Science and Technology,China
文摘Ni-W-P matrix composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by means of pulse electrodeposition,and the high-temperature oxidation behavior was investigated.The results show that when the oxidation time is controlled in 1 h,oxidation kinetics curve between oxidation mass gain rate and oxidation temperature of CeO2-SiO2/Ni-W-P composites accords with the index increasing law.When the oxidation temperature is controlled at 300℃,the kinetics curve between oxidation mass gain rate and oxidation time accords with the linear increasing law.The composites as-deposited are in the amorphous state and turn into the crystal state at 400℃.The microstructures of oxidation film on the composites will change from the compact state to the loose state with increasing oxidation temperature to 800℃.They are still continuous and compact,and there are no crackle,strip and falling-out.CeO2 and SiO2 nano-particles co-deposited into Ni-W-P alloy can improve the high-temperature oxidation resistance.
基金This study was financially supported by the Key Foundation of National Science in China (No. 90405015), the National Elitist Youth Foundation of China (No. 50425208the Doctorate Foundation of Northwestern Polytechnical University (CX200505).
文摘A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
基金Funded by the Innovative Program of Shanghai Municipal Education Commission (No.08YZ97)the National Natural Science Foundation of China (No.10704048)
文摘Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100-900 ℃. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV-visible spectra. Structural and magnetic characteristics were investigated through FT-IR and VSM. The transparency of the Fe2O3/SiO2 nano-composite films decreased with the content of the Fe2O3. Water and organic solvent in the films were evaporated with heat treatment, so the transparency of the films was enhanced under high temperature. It is also found that the saturation magnetization (Ms) of the films increases with the temperature. As the content of the Fe2O3 increases, when the content of the Fe2O3 is around 30wt%, the Ms of the films has a maximum value.
文摘Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.