The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Al...Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Alumina coatings were prepared on the surfaces of hollow quartz filament fiber,then a new lightweight and thermal insulating material were successfully prepared by impregnatingAl_(2)O_(3)–SiO_(2)sol into a needle fabric made by coated hollow quartz filament fiber.The coated quartz fiber,aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),nitrogen adsorption-desorption(BET),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile tests.The effects of different fiber and calcination temperatures on the microstructures and properties ofAl_(2)O_(3)–SiO_(2)composite aerogels were investigated.The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material.Compared to other fibers,Al_(2)O_(3)-coated hollow quartz fiber has significant advantages as reinforcement for composite,and their tensile strength is well retained after high temperature heat treatment.展开更多
A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
文摘Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Alumina coatings were prepared on the surfaces of hollow quartz filament fiber,then a new lightweight and thermal insulating material were successfully prepared by impregnatingAl_(2)O_(3)–SiO_(2)sol into a needle fabric made by coated hollow quartz filament fiber.The coated quartz fiber,aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),nitrogen adsorption-desorption(BET),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile tests.The effects of different fiber and calcination temperatures on the microstructures and properties ofAl_(2)O_(3)–SiO_(2)composite aerogels were investigated.The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material.Compared to other fibers,Al_(2)O_(3)-coated hollow quartz fiber has significant advantages as reinforcement for composite,and their tensile strength is well retained after high temperature heat treatment.
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.