In this paper,Si_(3)N_(4) was used as a novel solid-state sintering additive to prepare AION transparent ceramics with high transparency and flexural strength via the pressureless pre-sintering and hot isostatic press...In this paper,Si_(3)N_(4) was used as a novel solid-state sintering additive to prepare AION transparent ceramics with high transparency and flexural strength via the pressureless pre-sintering and hot isostatic pressing(HIP)method at a relatively low HIP temperature(1800℃).The effect of Si_(3)N_(4) content on the phase,microstructure,optical property,and flexural strength was investigated.The experimental results showed that a Si element was homogenously distributed in both pre-sintered and HIPed AION ceramics.The densification enhanced,the grain grew with the increasing Si_(3)N_(4) content in the pre-sintered AION ceramics,and all the samples became pore-free after HIP,which favor transparency.The AION ceramics doped with 0.10 wt%Si_(3)N_(4) had the highest transmittance of 83.8%at 600 nm and 85.6%at 2000 nm(4 mm in thickness),with flexural strength of 404 MPa,which were higher than those of the previous reports.展开更多
基金supported by the Natural Science Foundation of Shanghai(Grant No.19ZR1465000)the National Natural Science Foundation of China(Grant No.51902330).
文摘In this paper,Si_(3)N_(4) was used as a novel solid-state sintering additive to prepare AION transparent ceramics with high transparency and flexural strength via the pressureless pre-sintering and hot isostatic pressing(HIP)method at a relatively low HIP temperature(1800℃).The effect of Si_(3)N_(4) content on the phase,microstructure,optical property,and flexural strength was investigated.The experimental results showed that a Si element was homogenously distributed in both pre-sintered and HIPed AION ceramics.The densification enhanced,the grain grew with the increasing Si_(3)N_(4) content in the pre-sintered AION ceramics,and all the samples became pore-free after HIP,which favor transparency.The AION ceramics doped with 0.10 wt%Si_(3)N_(4) had the highest transmittance of 83.8%at 600 nm and 85.6%at 2000 nm(4 mm in thickness),with flexural strength of 404 MPa,which were higher than those of the previous reports.