The effect of the deferent rubber content substituted for fine aggregate on the mortar performance was studied.The effects of the rubber coated with the coating materials on the mortar compressive strength,bending str...The effect of the deferent rubber content substituted for fine aggregate on the mortar performance was studied.The effects of the rubber coated with the coating materials on the mortar compressive strength,bending strength and impact work were discussed.The optimum rubber powder content and the suitable coating material were found.Through the electrical probe test-BEI,SEI and calcium ion distribution,and the slight crack and the interface between the rubber and cement matrix are analyzed.The results show that the rubber powder coated with the surface treatment materials A,B and C has the capability of absorbing a large amount of energy under the compressive and flexural load and the slight cracks of R-C were controlled and restrained.展开更多
This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of...This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of these materials in place of plastic products would reduce the environmental impact of extensive plastic use. In this study, the tensile and flexural properties of molded uni-directional long fiber reinforced composites made from bamboo fiber bundles and Bamboo powder were examined. The results showed that the tensile and flexural strength of bamboo fiber/powder composites were increased with increasing fiber content. On the other side, both strengths of composite were decreased with increasing molding temperature after 180℃. The highest tensile and flexural strengths of the bamboo fiber reinforced bamboo powder composites specimens which were tested were recorded at 169.9 MPa and 221.1 MPa, respectively.展开更多
Glass-ceramic samples, having composition of SiO<sub>2</sub>-35, CaO-45, Na<sub>2</sub>O-10 and P<sub>2</sub>O<sub>5</sub>-10 in weight ratio were prepared through sinte...Glass-ceramic samples, having composition of SiO<sub>2</sub>-35, CaO-45, Na<sub>2</sub>O-10 and P<sub>2</sub>O<sub>5</sub>-10 in weight ratio were prepared through sintering route. Glass powder was reinforced by Al powder. The strength of glass-ceramic composite was found to be temperature dependent, and it varies with the addition of Al powder. Flexural strength increases with the increase of powder addition and sintering temperature, however, decreases with the increase of sintering time. There is an optimum temperature (>1100℃) above which flexural strength of all samples decreases. Bulk density changes to a higher value as the addition of Al-powder increases up to 3% by weight above which density decreases slowly. On the other hand, apparent porosity and water absorption decrease with the increase of percentage of Al powder added. Porosity and water absorption also showed a dependent characteristic on sintering time and sintering temperature.展开更多
Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies...Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.展开更多
Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of in...Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2展开更多
Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XR...Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XRD, SEM and EDX. The results show that there are macroscopic and microscopic differences between two kinds of powders. Spherical silver powders are 3 μm in diameter, and silver-tin oxide composite powders are mainly flake of about 0.3 μm in thickness. Silver crystal in silver-tin oxide composite powders is preferentially oriented in the (111) crystallographic direction and its oriented index is 2.581. Crystal lattice parameter of silver crystal of silver tin-oxide composite powders is 0.409 34 nm, larger than 0.408 68 nm of silver powders. The XPS analysis shows that silver in silver-tin oxide composite powders is metallic silver and tin oxide in silver tin-oxide composite powders has the red shift for Sn4+(3d5/2) and O2-(1s).展开更多
The SiO2/TiO2 composite powders including mineral tourmaline powders (T/SiO2/TiO2) were prepared from a sol made by a two-step hydrolysis method, using metasilicate ester as precursor. The powders were characterized b...The SiO2/TiO2 composite powders including mineral tourmaline powders (T/SiO2/TiO2) were prepared from a sol made by a two-step hydrolysis method, using metasilicate ester as precursor. The powders were characterized by scanning electron microscopy (SEM). The photocatalytic activity of the sample was evaluated by the photocatalytic degradation of methyl orange. The effects of heat-treatment on the photocatalytic activity were discussed. It is found that the T/SiO2/TiO2 composite powders show higher photocatalytic activity when including 10% SiO2 and 4% tourmaline. Moreover, the photocatalytic mechanism of tourmaline on the powders was proposed.展开更多
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect...The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties.展开更多
It is my pleasure and great privilege to present to you the launch of Advanced Powder Materials(APM),a new multidisciplinary,peer-reviewed journal.APM aims to provide a forum for the dissemination of original research...It is my pleasure and great privilege to present to you the launch of Advanced Powder Materials(APM),a new multidisciplinary,peer-reviewed journal.APM aims to provide a forum for the dissemination of original research articles as well as review articles in all areas related to powder materials.It is an international,open-access journal with the focus on cutting-edge findings in this rapidly changing field,while providing practical up-to-date information on advanced powder metallurgy materials,new energy and catalytic materials,high-performance structure and functional materials,advanced ceramics and hard materials,micro and nano powder materials,composite materials and coatings,additive manufacturing and computational materials design.展开更多
AB5 (MlNi4.0Al0.3Cu0.5Zn0.2) alloy and CoB alloy were prepared by arc melting. AB5-CoB composites were synthesized by simple mixing of AB5 alloy powders and CoB alloy powders, and their electrochemical hydrogen stor...AB5 (MlNi4.0Al0.3Cu0.5Zn0.2) alloy and CoB alloy were prepared by arc melting. AB5-CoB composites were synthesized by simple mixing of AB5 alloy powders and CoB alloy powders, and their electrochemical hydrogen storage properties were studied as negative electrodes in KOH aqueous solution. The maximum discharge capacity of the AB5-CoB(50%) composite (the content of CoB in the composite is 50 wt.%) reached 365.3 mAh.g^-1. After 100 charge-discharge cycles, the discharge capacity of the AB5-CoB(50%) composite was still much higher than that of the AB5 alloy. The high rate discharge capability (HRD) and potentiodynamic polarization were also tested.展开更多
To date,there is no research that deals with biological waste as fillers in polyphenylene sulfide(PPS).In this study,oyster shells were recycled and treated to prepare thermally-treated oyster shells(TOS),which were u...To date,there is no research that deals with biological waste as fillers in polyphenylene sulfide(PPS).In this study,oyster shells were recycled and treated to prepare thermally-treated oyster shells(TOS),which were used as PPS fillers to make new bio-based antibacterial composite materials.The effect of varying the content of TOS was studied by means of structure and performance characterization.PPS/TOS composites were demonstrated to have an antibacterial effect on the growth of E coli and S.aureus.Qualitative analysis showed that when the TOS content was≥30%and 40%,the composite materials had an apparent inhibition zone.Quantitative analysis showed that the antibacterial activity increased with the TOS content.Fourier transform infrared spectroscopy indicated the formation of hydrogen bonds between the molecular chains of TOS and PPS and the occurrence of a coordination reaction.At 10%TOS,the composite tensile strength reached a maximum value of 72.5 MPa,which is 9.65%higher than that of pure PPS.The trend of bending properties is the same as that of tensile properties,showing that the maximum property was reached for the composite with 10%TOS.At the same time,the crystallinity and contact angle were the highest,and the permeability coefficient was the lowest.The fatigue test results indicated that for the composite with 10%TOS,the tensile strength was 23%lower than static tensile strength,and the yield strength was 10%lower than the static yield strength.The results of the study showed that TOS not only could reduce the cost of PPS,but also could impart antibacterial properties and enhance the mechanical and,barrier properties,the thermostability,as well as the crystallinity.展开更多
An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers ...An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers were oriented along the extruded direction, is investigated. The results indicate that the hot compressive resistance of the TiBw/Ti composite is higher than that of the unreinforced Ti, and hot compressive resistance of the composite in the direction parallel to the whisker orientation is higher than that in the direction perpendicular to the whisker orientation. The hot compressive resistance of the composite increases with increasing strain rate and decreasing temperature. With increasing test temperature, the rate of the decrement of the compressive flow stress of the composite is higher than that of the unreinforced Ti. With increasing amount of compressive deformation, more and more TiB whiskers rotate and break during deformation. The rotation of the whiskers is easier at higher temperature, while, at lower temperature it becomes more difficult and whisker breakage becomes much more serious.展开更多
Iron-pillared bentonite(FB)was prepared by Fe(III)modified bentonite,and then the composites(FB-OS)were prepared by iron-pillared bentonite and oyster shell powder.The composites were characterized by FTIR,SEM,TGA,and...Iron-pillared bentonite(FB)was prepared by Fe(III)modified bentonite,and then the composites(FB-OS)were prepared by iron-pillared bentonite and oyster shell powder.The composites were characterized by FTIR,SEM,TGA,and EDS,and the phosphorus removal test was carried out.The results showed that FB-OS contained a large amount of CaO.Its structure was compact,but there were gaps in it.The maximum bending stress and compressive strength were 43.7 N and 0.927 MPa,respectively.The phosphorus removal test showed that the phosphorus removal rate of FB-OS was more than 90%,and measured the maximum adsorption capacity was 48.31 mg/g.A large amount of spherical products were produced on the surface and inside of FB-OS after phos-phorus removal,it was speculated that spherical products were amorphous calcium phosphate in the paper.Ana-lysis indicated that there was chemical adsorption during phosphorus removal.The kinetic equation of phosphorus adsorption by FB-OS was qt=10:193t/1+2:574t (R^(2)=0.995).The adsorption rate was mainly controlled by outerfilm diffusion and intraparticle diffusion.展开更多
Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extr...Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃).展开更多
Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper ...Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper bath was evaluated through the combination of process parameters like pH and temperature. The optimized values ofpH and temperature were found to be 12.5 and 60℃, respectively, which attributes to the bright maroon color of the coating with an increase in weight of 46%. The uncoated and coated powders were subjected to microstructural studies using scanning electron microscope (SEM) and the phases were analyzed using X-my diffrction (XRD). An attempt was made to understand the growth mechanism of the coating. The diffusion-shrinkage autocatalytic model was suggested for copper growth on the molybdenum surface.展开更多
Y(NO3)3 and NH3·H2O were used as a raw materials,and nano-Y2O3 powder was successfully synthesized by a precipitation method.Employing TEOS as a raw material,SiO2 powder was successfully prepared by a alkoxide-...Y(NO3)3 and NH3·H2O were used as a raw materials,and nano-Y2O3 powder was successfully synthesized by a precipitation method.Employing TEOS as a raw material,SiO2 powder was successfully prepared by a alkoxide-hydrolysis method,and a Y2O3/SiO2 composite powder was obtained by coating.The Y2O3,SiO2,and Y2O3/SiO2 powders were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),and Fourier transform infrared spectrophotometer(FT-IR);the Y2O3 and Y2O3/SiO2 powders were further examined by photoluminescence(PL) spectra.The results indicated that the Y2O3 powder had a body-centered cubic structure with an average size of 35 nm,while the SiO2 powder was amorphous,with an average size of 145 nm and a narrow size distribution.The PL spectra of the Y2O3 and Y2O3/SiO2 powders showed that their wavelength of emission spectra were 585 nm,while their wavelength of excitation spectra were in the range of 240-260 nm.The optical properties of the Y2O3/SiO2 powder were identical to the Y2O3 powder.展开更多
Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characte...Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.展开更多
1 Introduction Composite materials are a very important field in materials science, as they allow the properties of the material to be controlled through sum and product effects by changing the symmetry and connectivi...1 Introduction Composite materials are a very important field in materials science, as they allow the properties of the material to be controlled through sum and product effects by changing the symmetry and connectivity of each component of the composite material, improving the properties over those of a single phase material. The correct choice of filler and matrix is the展开更多
文摘The effect of the deferent rubber content substituted for fine aggregate on the mortar performance was studied.The effects of the rubber coated with the coating materials on the mortar compressive strength,bending strength and impact work were discussed.The optimum rubber powder content and the suitable coating material were found.Through the electrical probe test-BEI,SEI and calcium ion distribution,and the slight crack and the interface between the rubber and cement matrix are analyzed.The results show that the rubber powder coated with the surface treatment materials A,B and C has the capability of absorbing a large amount of energy under the compressive and flexural load and the slight cracks of R-C were controlled and restrained.
文摘This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of these materials in place of plastic products would reduce the environmental impact of extensive plastic use. In this study, the tensile and flexural properties of molded uni-directional long fiber reinforced composites made from bamboo fiber bundles and Bamboo powder were examined. The results showed that the tensile and flexural strength of bamboo fiber/powder composites were increased with increasing fiber content. On the other side, both strengths of composite were decreased with increasing molding temperature after 180℃. The highest tensile and flexural strengths of the bamboo fiber reinforced bamboo powder composites specimens which were tested were recorded at 169.9 MPa and 221.1 MPa, respectively.
文摘Glass-ceramic samples, having composition of SiO<sub>2</sub>-35, CaO-45, Na<sub>2</sub>O-10 and P<sub>2</sub>O<sub>5</sub>-10 in weight ratio were prepared through sintering route. Glass powder was reinforced by Al powder. The strength of glass-ceramic composite was found to be temperature dependent, and it varies with the addition of Al powder. Flexural strength increases with the increase of powder addition and sintering temperature, however, decreases with the increase of sintering time. There is an optimum temperature (>1100℃) above which flexural strength of all samples decreases. Bulk density changes to a higher value as the addition of Al-powder increases up to 3% by weight above which density decreases slowly. On the other hand, apparent porosity and water absorption decrease with the increase of percentage of Al powder added. Porosity and water absorption also showed a dependent characteristic on sintering time and sintering temperature.
文摘Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.
文摘Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2
文摘Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XRD, SEM and EDX. The results show that there are macroscopic and microscopic differences between two kinds of powders. Spherical silver powders are 3 μm in diameter, and silver-tin oxide composite powders are mainly flake of about 0.3 μm in thickness. Silver crystal in silver-tin oxide composite powders is preferentially oriented in the (111) crystallographic direction and its oriented index is 2.581. Crystal lattice parameter of silver crystal of silver tin-oxide composite powders is 0.409 34 nm, larger than 0.408 68 nm of silver powders. The XPS analysis shows that silver in silver-tin oxide composite powders is metallic silver and tin oxide in silver tin-oxide composite powders has the red shift for Sn4+(3d5/2) and O2-(1s).
基金Project(E2004000033) supported by the Natural Science Foundation of Hebei Province, China
文摘The SiO2/TiO2 composite powders including mineral tourmaline powders (T/SiO2/TiO2) were prepared from a sol made by a two-step hydrolysis method, using metasilicate ester as precursor. The powders were characterized by scanning electron microscopy (SEM). The photocatalytic activity of the sample was evaluated by the photocatalytic degradation of methyl orange. The effects of heat-treatment on the photocatalytic activity were discussed. It is found that the T/SiO2/TiO2 composite powders show higher photocatalytic activity when including 10% SiO2 and 4% tourmaline. Moreover, the photocatalytic mechanism of tourmaline on the powders was proposed.
文摘The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties.
文摘It is my pleasure and great privilege to present to you the launch of Advanced Powder Materials(APM),a new multidisciplinary,peer-reviewed journal.APM aims to provide a forum for the dissemination of original research articles as well as review articles in all areas related to powder materials.It is an international,open-access journal with the focus on cutting-edge findings in this rapidly changing field,while providing practical up-to-date information on advanced powder metallurgy materials,new energy and catalytic materials,high-performance structure and functional materials,advanced ceramics and hard materials,micro and nano powder materials,composite materials and coatings,additive manufacturing and computational materials design.
基金supported by the National High-Tech Research and Development Program of China (Nos.2007AA05Z149 and 2007AA05Z108)the Major State Basic Research Development Program of China (No.2010CB631303)+2 种基金the National Natural Science Foundation of China (Nos.50631020,50701025,and 50971071)the Doctoral Foundation of the Ministry of Education of China (No.20070055064)the Natural Science Foundation of Tianjin,China (No.07JCYBJC03500)
文摘AB5 (MlNi4.0Al0.3Cu0.5Zn0.2) alloy and CoB alloy were prepared by arc melting. AB5-CoB composites were synthesized by simple mixing of AB5 alloy powders and CoB alloy powders, and their electrochemical hydrogen storage properties were studied as negative electrodes in KOH aqueous solution. The maximum discharge capacity of the AB5-CoB(50%) composite (the content of CoB in the composite is 50 wt.%) reached 365.3 mAh.g^-1. After 100 charge-discharge cycles, the discharge capacity of the AB5-CoB(50%) composite was still much higher than that of the AB5 alloy. The high rate discharge capability (HRD) and potentiodynamic polarization were also tested.
基金Sichuan Province Science and Technology Support Program (2022JDTD0016,2020YFG0176)Chengdu Science and Technology (2021-RC02-00005-CG)+5 种基金Sichuan Golden-Elephant Sincerity Chemical Co.,Ltd (HX2020019)Zigong City Science and Technology (2019CXRC01,2020YGJC13)Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (2019CL05,2020CL19,2018CL07)Opening Project of Sichuan Province,the Foundation of Introduced Talent of Sichuan University of Science and Engineering (2017RCL16,2019RC05,2019RC07,2020RC16)the Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (2020JXY04)Xi’an Weijingyi Art and Culture Communication Co.,Ltd (HX2021385)。
文摘To date,there is no research that deals with biological waste as fillers in polyphenylene sulfide(PPS).In this study,oyster shells were recycled and treated to prepare thermally-treated oyster shells(TOS),which were used as PPS fillers to make new bio-based antibacterial composite materials.The effect of varying the content of TOS was studied by means of structure and performance characterization.PPS/TOS composites were demonstrated to have an antibacterial effect on the growth of E coli and S.aureus.Qualitative analysis showed that when the TOS content was≥30%and 40%,the composite materials had an apparent inhibition zone.Quantitative analysis showed that the antibacterial activity increased with the TOS content.Fourier transform infrared spectroscopy indicated the formation of hydrogen bonds between the molecular chains of TOS and PPS and the occurrence of a coordination reaction.At 10%TOS,the composite tensile strength reached a maximum value of 72.5 MPa,which is 9.65%higher than that of pure PPS.The trend of bending properties is the same as that of tensile properties,showing that the maximum property was reached for the composite with 10%TOS.At the same time,the crystallinity and contact angle were the highest,and the permeability coefficient was the lowest.The fatigue test results indicated that for the composite with 10%TOS,the tensile strength was 23%lower than static tensile strength,and the yield strength was 10%lower than the static yield strength.The results of the study showed that TOS not only could reduce the cost of PPS,but also could impart antibacterial properties and enhance the mechanical and,barrier properties,the thermostability,as well as the crystallinity.
文摘An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers were oriented along the extruded direction, is investigated. The results indicate that the hot compressive resistance of the TiBw/Ti composite is higher than that of the unreinforced Ti, and hot compressive resistance of the composite in the direction parallel to the whisker orientation is higher than that in the direction perpendicular to the whisker orientation. The hot compressive resistance of the composite increases with increasing strain rate and decreasing temperature. With increasing test temperature, the rate of the decrement of the compressive flow stress of the composite is higher than that of the unreinforced Ti. With increasing amount of compressive deformation, more and more TiB whiskers rotate and break during deformation. The rotation of the whiskers is easier at higher temperature, while, at lower temperature it becomes more difficult and whisker breakage becomes much more serious.
基金supported by the Project of Guangdong Academy of Building Research Group Co.,Ltd.,China(No.0100RDY2022D0000036).
文摘Iron-pillared bentonite(FB)was prepared by Fe(III)modified bentonite,and then the composites(FB-OS)were prepared by iron-pillared bentonite and oyster shell powder.The composites were characterized by FTIR,SEM,TGA,and EDS,and the phosphorus removal test was carried out.The results showed that FB-OS contained a large amount of CaO.Its structure was compact,but there were gaps in it.The maximum bending stress and compressive strength were 43.7 N and 0.927 MPa,respectively.The phosphorus removal test showed that the phosphorus removal rate of FB-OS was more than 90%,and measured the maximum adsorption capacity was 48.31 mg/g.A large amount of spherical products were produced on the surface and inside of FB-OS after phos-phorus removal,it was speculated that spherical products were amorphous calcium phosphate in the paper.Ana-lysis indicated that there was chemical adsorption during phosphorus removal.The kinetic equation of phosphorus adsorption by FB-OS was qt=10:193t/1+2:574t (R^(2)=0.995).The adsorption rate was mainly controlled by outerfilm diffusion and intraparticle diffusion.
基金Project (50971012) supported by the National Natural Science Foundation of China
文摘Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃).
文摘Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper bath was evaluated through the combination of process parameters like pH and temperature. The optimized values ofpH and temperature were found to be 12.5 and 60℃, respectively, which attributes to the bright maroon color of the coating with an increase in weight of 46%. The uncoated and coated powders were subjected to microstructural studies using scanning electron microscope (SEM) and the phases were analyzed using X-my diffrction (XRD). An attempt was made to understand the growth mechanism of the coating. The diffusion-shrinkage autocatalytic model was suggested for copper growth on the molybdenum surface.
基金supported by the National Basic Research Program of China (No.2007CB613603)
文摘Y(NO3)3 and NH3·H2O were used as a raw materials,and nano-Y2O3 powder was successfully synthesized by a precipitation method.Employing TEOS as a raw material,SiO2 powder was successfully prepared by a alkoxide-hydrolysis method,and a Y2O3/SiO2 composite powder was obtained by coating.The Y2O3,SiO2,and Y2O3/SiO2 powders were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),and Fourier transform infrared spectrophotometer(FT-IR);the Y2O3 and Y2O3/SiO2 powders were further examined by photoluminescence(PL) spectra.The results indicated that the Y2O3 powder had a body-centered cubic structure with an average size of 35 nm,while the SiO2 powder was amorphous,with an average size of 145 nm and a narrow size distribution.The PL spectra of the Y2O3 and Y2O3/SiO2 powders showed that their wavelength of emission spectra were 585 nm,while their wavelength of excitation spectra were in the range of 240-260 nm.The optical properties of the Y2O3/SiO2 powder were identical to the Y2O3 powder.
基金supported by the National Natural Science Foundation of China (No.50574075)Program for New Century Excellent Talents in University(No.NCET-05-0873)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20060700011)
文摘Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.
基金This work was supported by the National Advanced Materials Research Project.
文摘1 Introduction Composite materials are a very important field in materials science, as they allow the properties of the material to be controlled through sum and product effects by changing the symmetry and connectivity of each component of the composite material, improving the properties over those of a single phase material. The correct choice of filler and matrix is the