Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural netwo...Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets.展开更多
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,...Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network.展开更多
The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of ...The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of instances of clients simultaneously requesting the same Web page that contains the same SQL queries, the number of tables queried by the SQL, the number of records to be displayed on the requested Web pages, and the type of used database server. This work demonstrates the influences of these parameters on the results of Web server performance analyzes. For the MySQL database server, it has been observed that the mean response time of the Web server tends to become increasingly slow as the number of client connection occurrences as well as the number of records to display increases. For the PostgreSQL database server, the mean response time of the Web server does not change much, although there is an increase in the number of clients and/or size of information to be displayed on Web pages. Although it has been observed that the mean response time of the Web server is generally a little faster for the MySQL database server, it has been noted that this mean response time of the Web server is more stable for PostgreSQL database server.展开更多
A person’s eye gaze can effectively express that person’s intentions.Thus,gaze estimation is an important approach in intelligent manufacturing to analyze a person’s intentions.Many gaze estimation methods regress ...A person’s eye gaze can effectively express that person’s intentions.Thus,gaze estimation is an important approach in intelligent manufacturing to analyze a person’s intentions.Many gaze estimation methods regress the direction of the gaze by analyzing images of the eyes,also known as eye patches.However,it is very difficult to construct a person-independent model that can estimate an accurate gaze direction for every person due to individual differences.In this paper,we hypothesize that the difference in the appearance of each of a person’s eyes is related to the difference in the corresponding gaze directions.Based on this hypothesis,a differential eyes’appearances network(DEANet)is trained on public datasets to predict the gaze differences of pairwise eye patches belonging to the same individual.Our proposed DEANet is based on a Siamese neural network(SNNet)framework which has two identical branches.A multi-stream architecture is fed into each branch of the SNNet.Both branches of the DEANet that share the same weights extract the features of the patches;then the features are concatenated to obtain the difference of the gaze directions.Once the differential gaze model is trained,a new person’s gaze direction can be estimated when a few calibrated eye patches for that person are provided.Because personspecific calibrated eye patches are involved in the testing stage,the estimation accuracy is improved.Furthermore,the problem of requiring a large amount of data when training a person-specific model is effectively avoided.A reference grid strategy is also proposed in order to select a few references as some of the DEANet’s inputs directly based on the estimation values,further thereby improving the estimation accuracy.Experiments on public datasets show that our proposed approach outperforms the state-of-theart methods.展开更多
基金the National Natural Science Foundation of China(No.61732007)Strategic Priority Research Program of Chinese Academy of Sciences(XDB32050200,XDC01020000).
文摘Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018 YFB1306600)the National Natural Science Foundation of China(Grant Nos.62076207,62076208,and U20A20227)the Science and Technology Plan Program of Yubei District of Chongqing(Grant No.2021-17)。
文摘Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network.
文摘The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of instances of clients simultaneously requesting the same Web page that contains the same SQL queries, the number of tables queried by the SQL, the number of records to be displayed on the requested Web pages, and the type of used database server. This work demonstrates the influences of these parameters on the results of Web server performance analyzes. For the MySQL database server, it has been observed that the mean response time of the Web server tends to become increasingly slow as the number of client connection occurrences as well as the number of records to display increases. For the PostgreSQL database server, the mean response time of the Web server does not change much, although there is an increase in the number of clients and/or size of information to be displayed on Web pages. Although it has been observed that the mean response time of the Web server is generally a little faster for the MySQL database server, it has been noted that this mean response time of the Web server is more stable for PostgreSQL database server.
基金supported by the Science and Technology Support Project of Sichuan Science and Technology Department(2018SZ0357)and China Scholarship。
文摘A person’s eye gaze can effectively express that person’s intentions.Thus,gaze estimation is an important approach in intelligent manufacturing to analyze a person’s intentions.Many gaze estimation methods regress the direction of the gaze by analyzing images of the eyes,also known as eye patches.However,it is very difficult to construct a person-independent model that can estimate an accurate gaze direction for every person due to individual differences.In this paper,we hypothesize that the difference in the appearance of each of a person’s eyes is related to the difference in the corresponding gaze directions.Based on this hypothesis,a differential eyes’appearances network(DEANet)is trained on public datasets to predict the gaze differences of pairwise eye patches belonging to the same individual.Our proposed DEANet is based on a Siamese neural network(SNNet)framework which has two identical branches.A multi-stream architecture is fed into each branch of the SNNet.Both branches of the DEANet that share the same weights extract the features of the patches;then the features are concatenated to obtain the difference of the gaze directions.Once the differential gaze model is trained,a new person’s gaze direction can be estimated when a few calibrated eye patches for that person are provided.Because personspecific calibrated eye patches are involved in the testing stage,the estimation accuracy is improved.Furthermore,the problem of requiring a large amount of data when training a person-specific model is effectively avoided.A reference grid strategy is also proposed in order to select a few references as some of the DEANet’s inputs directly based on the estimation values,further thereby improving the estimation accuracy.Experiments on public datasets show that our proposed approach outperforms the state-of-theart methods.