期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
DSNNs:learning transfer from deep neural networks to spiking neural networks 被引量:3
1
作者 Zhang Lei Du Zidong +1 位作者 Li Ling Chen Yunji 《High Technology Letters》 EI CAS 2020年第2期136-144,共9页
Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural netwo... Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets. 展开更多
关键词 DEEP leaning SPIKING neural network(snn) CONVERT METHOD spatially folded network
下载PDF
Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
2
作者 Wenwu Jiang Jie Li +4 位作者 Hongbo Liu Xicong Qian Yuan Ge Lidan Wang Shukai Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期225-233,共9页
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,... Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network. 展开更多
关键词 MEMRISTOR multi-synaptic circuit spiking neuron spiking neural network(snn)
下载PDF
Analysis and Neural Networks Modeling of Web Server Performances Using MySQL and PostgreSQL
3
作者 Fontaine Rafamantanantsoa Maherindefo Laha 《Communications and Network》 2018年第4期142-151,共10页
The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of ... The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of instances of clients simultaneously requesting the same Web page that contains the same SQL queries, the number of tables queried by the SQL, the number of records to be displayed on the requested Web pages, and the type of used database server. This work demonstrates the influences of these parameters on the results of Web server performance analyzes. For the MySQL database server, it has been observed that the mean response time of the Web server tends to become increasingly slow as the number of client connection occurrences as well as the number of records to display increases. For the PostgreSQL database server, the mean response time of the Web server does not change much, although there is an increase in the number of clients and/or size of information to be displayed on Web pages. Although it has been observed that the mean response time of the Web server is generally a little faster for the MySQL database server, it has been noted that this mean response time of the Web server is more stable for PostgreSQL database server. 展开更多
关键词 Web SERVER PERFORMANCES neural network Database SERVER MYSQL POSTGRESQL APACHE Mean Response Time APACHE Benchmark snnS
下载PDF
通过分区间移位实现高效ANN-SNN转换
4
作者 黄志鹏 《福建电脑》 2024年第12期8-13,共6页
SNN因其在神经形态芯片中的高能效优势而受到广泛关注。ANN-SNN转换是实现深度SNN的主流方法之一,但在极低延迟下,死神经元脉冲误差导致目标SNN与源ANN之间存在性能差距。为解决死神经元脉冲误差,实现高性能低延迟SNN,本文提出了一种分... SNN因其在神经形态芯片中的高能效优势而受到广泛关注。ANN-SNN转换是实现深度SNN的主流方法之一,但在极低延迟下,死神经元脉冲误差导致目标SNN与源ANN之间存在性能差距。为解决死神经元脉冲误差,实现高性能低延迟SNN,本文提出了一种分区间移位激活函数,用于替代传统的ReLU激活函数。实验结果表明,在CIFAR-10数据集上,本文方法得到的SNN仅需4个时间步即可达到94.78%的Top-1准确率。 展开更多
关键词 脉冲神经网络 ANN-snn转换 分区间移位 ReLU激活函数
下载PDF
VMD-PE协同SNN的输电线路故障辨识方法 被引量:13
5
作者 付华 金岑 《电子测量与仪器学报》 CSCD 北大核心 2020年第6期86-92,共7页
针对输电线路短路故障危害大、故障辨识率较低等问题,提出一种结合变分模态分解排列熵(VMD-PE)与孪生神经网络(SNN)的故障辨识方法,利用瞬时频率均值对VMD进行参数优化,确定分解层数K,通过VMD分解故障时的三相电压,计算分解后每个分量... 针对输电线路短路故障危害大、故障辨识率较低等问题,提出一种结合变分模态分解排列熵(VMD-PE)与孪生神经网络(SNN)的故障辨识方法,利用瞬时频率均值对VMD进行参数优化,确定分解层数K,通过VMD分解故障时的三相电压,计算分解后每个分量的排列熵,将其作为故障特征量;将故障特征输入到训练好的SNN中进行相似性度量,比较两个输入样本之间的相似程度,判别出输电线路短路故障类型。通过仿真实验验证了该方法的可行性,并与其他分类方法相对比,证明了该方法的准确性和优越性。 展开更多
关键词 输电线路 故障辨识 变分模态分解(VMD) 孪生神经网络(snn) 排列熵(PE)
下载PDF
基于预测模型的SNN控制在湿法脱硫中的应用 被引量:5
6
作者 白建云 范常浩 李金霞 《自动化与仪表》 2017年第3期39-43,共5页
针对目前燃煤电厂湿法脱硫动态特性具有大迟延、大惯性、时变、非线性等特点,且系统自动控制投运率低的现状,该文设计了一种基于预测模型的单节点神经网络(SNN)控制算法,将单节点神经网络结构控制器与传统的PID控制规律相融合,既具有了... 针对目前燃煤电厂湿法脱硫动态特性具有大迟延、大惯性、时变、非线性等特点,且系统自动控制投运率低的现状,该文设计了一种基于预测模型的单节点神经网络(SNN)控制算法,将单节点神经网络结构控制器与传统的PID控制规律相融合,既具有了自学习和自适应的特点,也弥补了常规PID参数不能在线调整带来的弊端。同时加入预测控制,将系统未来的输出值提前反馈到控制器,对过程纯滞后特性具有明显的补偿效果,提高系统的稳定性和鲁棒性。结合某300 MW CFB机组炉外湿法脱硫系统数学模型进行控制仿真。结果表明,该控制算法相对于传统PID控制不仅超调量小、调节时间短、而且能有效解决模型参数改变和扰动带来的不稳定性,具有较强的适应性和抗干扰能力。 展开更多
关键词 单节点神经网络 预测控制 湿法脱硫 抗干扰能力
下载PDF
基于灰度纹理特征提取和CS-SNN的双初级永磁同步直线电机退磁故障诊断研究 被引量:6
7
作者 刘铄 宋俊材 +2 位作者 陆思良 吴先红 丁伟 《中国电机工程学报》 EI CSCD 北大核心 2023年第16期6464-6473,共10页
引入一种基于图像形态学纹理特征提取与布谷鸟搜索优化脉冲神经网络(cuckoo search-spiking neural network,CS-SNN)算法相结合的方法,以解决双初级永磁同步直线电机(dual primary permanent magnet synchronous linear motor,DPPMSLM)... 引入一种基于图像形态学纹理特征提取与布谷鸟搜索优化脉冲神经网络(cuckoo search-spiking neural network,CS-SNN)算法相结合的方法,以解决双初级永磁同步直线电机(dual primary permanent magnet synchronous linear motor,DPPMSLM)退磁故障精细定量化诊断识别的问题。首先,根据DPPMSLM拓扑结构约束,通过有限元仿真提取电机气隙空间中三线磁密信号作为有效故障信号;其次,引入图像纹理分析的方法,将一维数据信号映射为二维灰度图像,再采用伽马矫正和边缘提取技术增强图像信息,以提取图像纹理特征组成故障特征向量;然后建立两级CS-SNN分类器实现退磁故障位置类型和严重程度的精确诊断分类;最后,通过退磁样机制作和实验平台验证,提出的新方法能够准确识别DPPMSLM退磁故障位置和严重程度,并具有良好的鲁棒性,是一种有效可行的方法。 展开更多
关键词 双初级永磁同步直线电机 退磁故障诊断 图像纹理分析 故障特征向量 布谷鸟搜索优化脉冲神经网络
下载PDF
融合卷积块注意力模块和Siamese神经网络的人脸识别算法 被引量:1
8
作者 孟祥周 李映君 +1 位作者 王桂从 蒙天生 《光学精密工程》 EI CAS CSCD 北大核心 2023年第21期3192-3202,共11页
针对传统人脸识别方法识别性能较差,基于深度学习的方法在非限制条件下识别较为困难,人脸特征区分性弱,识别精度容易受到姿势、表情等方面影响的问题,提出了一种引入卷积块注意力模块的孪生神经网络模型结构。该结构是基于孪生神经网络(... 针对传统人脸识别方法识别性能较差,基于深度学习的方法在非限制条件下识别较为困难,人脸特征区分性弱,识别精度容易受到姿势、表情等方面影响的问题,提出了一种引入卷积块注意力模块的孪生神经网络模型结构。该结构是基于孪生神经网络(Siamese neural network)的基础框架进行改进的,在框架中引入改进的VGG11_BN模型进行特征提取。该模型是在VGG11结构的基础上引入批归一化(Batch Normalization,BN)技术,在原模型结构的基础上,提出引入CBAM混合注意力机制的特征提取网络;最后,针对目前亚洲人的人脸识别训练较少的情况,采用更加符合亚洲人脸特征的CASIA-FaceV5数据集进行识别训练。实验结果表明:本文算法在人脸识别方面的准确率达到了96.67%,并且在CAS-PEAL-R1人脸数据集上比SRGES,VGG11+siamese算法的准确率分别提升6.05%,6.7%。该算法可以在多因素影响下更好地进行人脸识别验证,具有良好的稳定性。 展开更多
关键词 人脸识别 孪生神经网络 深度学习 注意力机制 稳定性
下载PDF
基于Siamese卷积神经网络的指静脉识别 被引量:5
9
作者 戴庆华 陈光化 +1 位作者 唐逍 徐子豪 《电子测量技术》 2018年第24期51-55,共5页
针对在指静脉识别中特征提取困难以及深度学习方法在添加新类别时需要重新学习的问题,提出使用Siamese卷积神经网络进行指静脉相似度计算的识别方法。首先利用Sobel算子对图像边缘检测,通过形态学处理提取感兴趣区域(ROI),获取识别图像... 针对在指静脉识别中特征提取困难以及深度学习方法在添加新类别时需要重新学习的问题,提出使用Siamese卷积神经网络进行指静脉相似度计算的识别方法。首先利用Sobel算子对图像边缘检测,通过形态学处理提取感兴趣区域(ROI),获取识别图像;其次,构建卷积神经网络提取有效的特征编码,在Siamese网络中使用编码计算距离,并使用三元组损失函数定义目标函数。实验结果表明,在公开的指静脉数据库验证,提出的算法获得较高的识别准确率,在指静脉识别中具有一定的实用价值。 展开更多
关键词 卷积神经网络 siamese网络 相似度计算 指静脉识别
下载PDF
基于SNN神经元重分布的NEST仿真器性能优化 被引量:2
10
作者 刘家航 郁龚健 +3 位作者 李佩琦 华夏 柴志雷 陈闻杰 《计算机工程》 CAS CSCD 北大核心 2022年第3期189-196,共8页
为满足大规模脉冲神经网络(SNN)的计算需求,类脑计算系统通常需要采用大规模并行计算平台。然而随着节点数量的增多,通信在仿真中所占比例大幅增加,导致计算效率下降。类脑模拟器开源软件NEST采用缓冲区大小相等的策略,有效缩短了通信时... 为满足大规模脉冲神经网络(SNN)的计算需求,类脑计算系统通常需要采用大规模并行计算平台。然而随着节点数量的增多,通信在仿真中所占比例大幅增加,导致计算效率下降。类脑模拟器开源软件NEST采用缓冲区大小相等的策略,有效缩短了通信时间,但是由于缓冲区互相无交流,使得通信数据量持续增加,因此其在能耗方面表现较差。分析NEST集群的负载特性,针对其中的通信问题进行稀疏性优化,提出基于SNN子图跨节点优化的神经元重分布算法ReLOC。通过优化SNN子图的跨节点分布减少每一轮神经元到进程的数量,从而减少跨节点脉冲,使进程间通信更加稀疏,达到缩减每一轮通信进程的目的。在此基础上,以稀疏交换的思想对NEST本身的通信机制进行改进,使有脉冲交换的进程进行数据交换,从而在连接稀疏的情况下提升通信效率。以包含28个Xilinx PYNQ节点的计算集群作为实验平台,运行皮质微电路SNN模型和平衡随机网络模型,验证ReLOC算法的有效性。实验结果表明,相比循环分布算法,重分布算法能够使通信的平均稀疏性提高20%,同时配合稀疏交换最多可使通信能耗减少98.63%。 展开更多
关键词 脉冲神经网络 神经元重分布 PYNQ集群 NEST仿真器 稀疏交换
下载PDF
基于Siamese卷积神经网络的影像瓦片变化检测技术 被引量:3
11
作者 万冉冉 陈娟 +2 位作者 廖明伟 刘异 庞超 《测绘通报》 CSCD 北大核心 2020年第4期96-100,129,共6页
针对地理信息变化较快而传统更新方式效率不高的问题,目前许多学者提出了各类变化检测的方法,但这些方法大都是基于影像数据进行试验,对影像预处理要求较高,且检测精度的稳定性较差,受数据源质量影响较大。而天地图、百度地图、谷歌地... 针对地理信息变化较快而传统更新方式效率不高的问题,目前许多学者提出了各类变化检测的方法,但这些方法大都是基于影像数据进行试验,对影像预处理要求较高,且检测精度的稳定性较差,受数据源质量影响较大。而天地图、百度地图、谷歌地图等地图中均可免费下载各种级别的影像瓦片,因此本文提出利用天地图影像瓦片进行试验,采用Siamese卷积神经网络(SCNN)和深度学习技术,开发基于SCNN的高精度变化监测算法,以快速发现变化区域,实现地理信息变化信息检测。 展开更多
关键词 影像瓦片 siamese卷积神经网络 深度学习 变化检测 天地图
下载PDF
SWAM:SNN工作负载自动映射器 被引量:4
12
作者 郁龚健 张鲁飞 +4 位作者 李佩琦 华夏 刘家航 柴志雷 陈闻杰 《计算机科学与探索》 CSCD 北大核心 2021年第9期1641-1657,共17页
为了满足大规模脉冲神经网络(SNN)的计算需求,类脑计算系统通常需要采用大规模并行计算平台。因此,如何快速为SNN工作负载确定合理的计算节点数(即如何把工作负载合理映射到计算平台上)以获得最佳的性能、功耗等指标就成为类脑计算系统... 为了满足大规模脉冲神经网络(SNN)的计算需求,类脑计算系统通常需要采用大规模并行计算平台。因此,如何快速为SNN工作负载确定合理的计算节点数(即如何把工作负载合理映射到计算平台上)以获得最佳的性能、功耗等指标就成为类脑计算系统需解决的关键问题之一。首先分析了SNN工作负载特性并为其建立起计算模型;然后针对NEST类脑仿真器,进一步实例化了SNN的内存、计算和通信负载模型;最终设计并实现了一种基于NEST的SNN工作负载自动映射器(SWAM)。SWAM可以自动计算出映射结果并完成映射,避免了极其耗时的工作负载映射手动试探过程。在ARM+FPGA、纯ARM、PC集群三种不同的计算平台上运行SNN典型应用,并比较SWAM、LM算法拟合和实测的映射结果。实验结果表明:SWAM的平均映射准确率达到98.833%,与LM方法与实测映射相比,SWAM具有绝对的时间代价优势。 展开更多
关键词 脉冲神经网络(snn) 工作负载映射 PYNQ集群 现场可编程逻辑门阵列(FPGA)加速 NEST仿真器
下载PDF
基于SNN-LSTM的小样本数据下轴承故障诊断方法 被引量:8
13
作者 吕云开 武兵 李聪明 《机电工程》 CAS 北大核心 2023年第1期62-68,共7页
基于深度学习的故障诊断方法的实现,需要用到大量的、有标注的训练样本,而在小样本数据下,采用这些方法会产生模型欠拟合问题,同时获得的分类准确率也较低。为了解决上述问题,提出了一种小样本数据下结合孪生神经网络(SNN)与长短时记忆... 基于深度学习的故障诊断方法的实现,需要用到大量的、有标注的训练样本,而在小样本数据下,采用这些方法会产生模型欠拟合问题,同时获得的分类准确率也较低。为了解决上述问题,提出了一种小样本数据下结合孪生神经网络(SNN)与长短时记忆网络(LSTM)的轴承故障诊断方法。首先,以一对带有正负标签的原始振动信号样本作为诊断方法的输入,采用比较二者相似度的方法,扩充了训练样本个数;然后,采用共享提取样本对特征网络参数的方法,完成了SNN的搭建过程;使用卷积层、池化层及LSTM层提取了原始振动信号的特征,通过计算二者之间的曼哈顿距离,判断输入样本对的相似度,对不同状态下的轴承完成了分类;最后,为了验证基于SNN-LSTM的故障诊断方法在轴承故障诊断中的有效性,通过轴承故障诊断实验,采集了在不同转速、不同状态下的轴承振动信号数据。研究结果表明:当样本数量仅为140个,采用基于SNN-LSTM的故障诊断方法的准确率达到80.57%,相比于深度学习经典方法,在小样本数据下采用该方法具有更高的诊断准确率。 展开更多
关键词 深度学习 孪生神经网络 长短时记忆网络 训练样本 模型欠拟合 分类准确率 曼哈顿距离
下载PDF
融合残差连接与通道注意力机制的Siamese目标跟踪算法 被引量:10
14
作者 邵江南 葛洪伟 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第2期260-269,共10页
针对Siamese跟踪算法在目标形变、相似物体干扰等复杂情况下容易跟踪漂移或丢失的问题,提出一种融合残差连接与通道注意力机制的目标跟踪算法.首先,通过残差连接将模板分支网络提取的浅层结构特征与深层语义特征进行有效的融合,以提高... 针对Siamese跟踪算法在目标形变、相似物体干扰等复杂情况下容易跟踪漂移或丢失的问题,提出一种融合残差连接与通道注意力机制的目标跟踪算法.首先,通过残差连接将模板分支网络提取的浅层结构特征与深层语义特征进行有效的融合,以提高模型的表征能力;其次,引入通道注意力模块,使模型自适应地对不同语义目标特征通道加权,以提高模型的泛化能力;最后设计并提出一种基于相关性响应值的权重掩码,在离线训练时提高相似语义目标损失值的权重,使模型在端到端的离线学习中增强对相似语义目标的辨别力.在标准跟踪数据集OTB,TempleColor128,VOT2016和VOT2018上与主流跟踪算法进行对比实验,结果表明,该算法在跟踪精度和成功率上都展现了极强的竞争力,具有优越的实时性和可靠性. 展开更多
关键词 目标跟踪 卷积神经网络 孪生网络 特征融合 通道注意力机制
下载PDF
基于CAR-Siamese网络的高分辨率遥感图像建筑物变化检测 被引量:4
15
作者 姚沐风 昝露洋 +2 位作者 李柏鹏 李庆亭 陈正超 《中国科学院大学学报(中英文)》 CSCD 北大核心 2023年第3期380-387,共8页
准确提取建筑物变化区域对城乡规划、地理国情监测、城市扩张分析有着重要意义。传统遥感变化检测方法难以适应遥感图像复杂场景下的变化检测任务的要求。近年来广泛应用于计算机视觉领域的深度学习变化检测算法相对于传统方法在效率和... 准确提取建筑物变化区域对城乡规划、地理国情监测、城市扩张分析有着重要意义。传统遥感变化检测方法难以适应遥感图像复杂场景下的变化检测任务的要求。近年来广泛应用于计算机视觉领域的深度学习变化检测算法相对于传统方法在效率和精度上有明显提升。然而遥感图像上建筑物特征丰富、变化多样,且建筑物变化样本获取难度大,导致现有深度学习模型在建筑物变化检测任务上精度受限。针对这一问题,提出变化注意力残差孪生网络(CAR-siamese net),增强不同尺度下图像信息的共享交流,充分学习建筑物的变化特征,同时,提出建筑物语义分割样本预训练策略,有效利用现有建筑物分割样本,最终提升了变化检测网络对建筑物变化的解译能力。以北京昌平区影像为底图制作建筑物变化检测数据集,在该数据集和Levir-CD公开数据集上的实验结果表明,该方法能有效提高建筑物变化检测精度。 展开更多
关键词 变化检测 建筑物 深度学习 卷积神经网络 孪生网络 变化注意力残差
下载PDF
Gaze Estimation via a Differential Eyes’Appearances Network with a Reference Grid 被引量:1
16
作者 Song Gu Lihui Wang +2 位作者 Long He Xianding He Jian Wang 《Engineering》 SCIE EI 2021年第6期777-786,共10页
A person’s eye gaze can effectively express that person’s intentions.Thus,gaze estimation is an important approach in intelligent manufacturing to analyze a person’s intentions.Many gaze estimation methods regress ... A person’s eye gaze can effectively express that person’s intentions.Thus,gaze estimation is an important approach in intelligent manufacturing to analyze a person’s intentions.Many gaze estimation methods regress the direction of the gaze by analyzing images of the eyes,also known as eye patches.However,it is very difficult to construct a person-independent model that can estimate an accurate gaze direction for every person due to individual differences.In this paper,we hypothesize that the difference in the appearance of each of a person’s eyes is related to the difference in the corresponding gaze directions.Based on this hypothesis,a differential eyes’appearances network(DEANet)is trained on public datasets to predict the gaze differences of pairwise eye patches belonging to the same individual.Our proposed DEANet is based on a Siamese neural network(SNNet)framework which has two identical branches.A multi-stream architecture is fed into each branch of the SNNet.Both branches of the DEANet that share the same weights extract the features of the patches;then the features are concatenated to obtain the difference of the gaze directions.Once the differential gaze model is trained,a new person’s gaze direction can be estimated when a few calibrated eye patches for that person are provided.Because personspecific calibrated eye patches are involved in the testing stage,the estimation accuracy is improved.Furthermore,the problem of requiring a large amount of data when training a person-specific model is effectively avoided.A reference grid strategy is also proposed in order to select a few references as some of the DEANet’s inputs directly based on the estimation values,further thereby improving the estimation accuracy.Experiments on public datasets show that our proposed approach outperforms the state-of-theart methods. 展开更多
关键词 Gaze estimation Differential gaze siamese neural network Cross-person evaluations Human–robot collaboration
下载PDF
小样本下基于决策树-SNN的恶意流量检测方法 被引量:1
17
作者 李道全 李玉秀 任大用 《计算机工程与应用》 CSCD 北大核心 2023年第21期258-266,共9页
针对目前小样本下的恶意流量检测方法存在准确度低、特征提取不足和模型过拟合问题,提出了一种小样本下基于改进决策树-孪生神经网络的恶意流量检测算法。为了降低小样本下多分类任务的难度,利用类间中心距离构建二叉决策树将多分类问... 针对目前小样本下的恶意流量检测方法存在准确度低、特征提取不足和模型过拟合问题,提出了一种小样本下基于改进决策树-孪生神经网络的恶意流量检测算法。为了降低小样本下多分类任务的难度,利用类间中心距离构建二叉决策树将多分类问题转换为二分类问题。将孪生神经网络的对比分支设计为三支一维卷积神经网络并行的结构来解决小样本下特征提取不足问题。引入了通过池化策略和一维卷积操作优化的SE(squeeze-andexcitation)模块,以减少小样本下模型过拟合问题。通过对比样本的相似度实现了恶意流量检测。实验结果表明,所提方法在小样本下的恶意流量检测问题上具有良好的效果。 展开更多
关键词 恶意流量 决策树 孪生神经网络 类间中心距离 小样本 通道注意力
下载PDF
基于联合权重超图划分的SNN负载均衡方法 被引量:1
18
作者 徐聪 叶钧超 +1 位作者 黄尧 柴志雷 《计算机应用研究》 CSCD 北大核心 2023年第7期2130-2137,共8页
大规模脉冲神经网络并行模拟是探究大脑机能的重要手段。其难点在于合理地将负载映射到并行分布式平台上,提升模拟速度。为解决该问题,提出一种基于联合权重超图划分的SNN负载均衡方法,解决并行计算中进程间计算负载与通信负载的均衡问... 大规模脉冲神经网络并行模拟是探究大脑机能的重要手段。其难点在于合理地将负载映射到并行分布式平台上,提升模拟速度。为解决该问题,提出一种基于联合权重超图划分的SNN负载均衡方法,解决并行计算中进程间计算负载与通信负载的均衡问题,提高SNN模拟速度,并使用稀疏通信的方式替代集体通信,解决事件通信过程中的数据冗余问题,提升通信效率。实验结果表明,该方法使带有STDP突触20%规模的皮质层微电路模型的模拟时间,比标准循环分配算法缩短约64.5%,比普通超图分配算法缩短约57.4%,同时事件通信数据量减少了90%以上。 展开更多
关键词 脉冲神经网络 负载均衡 联合权重 超图划分 并行计算
下载PDF
基于脉冲频率与输入电流关系的SNN训练算法
19
作者 兰浩鑫 陈云华 《计算机工程与应用》 CSCD 北大核心 2022年第10期87-92,共6页
脉冲神经网络(spiking neural network,SNN)以异步事件驱动,支持大规模并行计算,在改善同步模拟神经网络的计算效率方面具有巨大潜力。然而,目前SNN仍然面临无法直接训练的难题,为此,受到神经科学领域关于LIF(leaky integrate-and-fire... 脉冲神经网络(spiking neural network,SNN)以异步事件驱动,支持大规模并行计算,在改善同步模拟神经网络的计算效率方面具有巨大潜力。然而,目前SNN仍然面临无法直接训练的难题,为此,受到神经科学领域关于LIF(leaky integrate-and-fire)神经元响应机制研究启发,提出了一种新的基于频率编码的SNN训练算法。通过仿真实验对LIF神经元发放脉冲频率进行建模,得到LIF神经元脉冲频率与输入电流之间显示表达关系,并将其导数作为梯度,解决了SNN训练过程中离散脉冲事件产生的不可微性问题,使得可利用BP算法对SNN进行训练。现有基于频率编码的方法采用时间信用分配机制进行参数更新,通常具有较差的学习效率,为此,采用LIF神经元响应机制更新网络参数,提高了学习效率。在MNIST和CIFAR10数据集上的实验结果验证了所提方法的有效性,分类精度分别达到了99.53%和89.46%,在CIFAR10数据上的识别精度相较于先前研究者提高了4.22个百分点,在学习效率方面相较于先前采用时间信用分配方法提高了一倍左右。 展开更多
关键词 脉冲神经网络(snn) 反向传播算法 LIF神经元 脉冲频率 神经形态类脑计算
下载PDF
基于Siamese网络的行人重识别方法
20
作者 叶锋 刘天璐 +3 位作者 李诗颖 华笃伟 陈星宇 林文忠 《计算机系统应用》 2020年第4期209-213,共5页
针对目前行人重识别技术的缺点,提出一种基于Siamese网络的行人重识别方法.首先使用Dropout算法对卷积神经网络进行改良,降低发生过拟合问题的概率;而后构造一个Siamese网络,将CNN (Convolution Neural Network)中特征提取和检验相融合... 针对目前行人重识别技术的缺点,提出一种基于Siamese网络的行人重识别方法.首先使用Dropout算法对卷积神经网络进行改良,降低发生过拟合问题的概率;而后构造一个Siamese网络,将CNN (Convolution Neural Network)中特征提取和检验相融合,提高图像识别的效率和准确率;最后利用度量学习算法中的马氏距离作为检索图像匹配相似度的评价指标.实验结果表明:针对Market-1501数据集,该方法可以有效提高采用卷积神经网络的行人重识别方法识别效率和准确率. 展开更多
关键词 行人重识别 卷积神经网络 siamese网络 DROPOUT
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部