This study presents thermokarst lake changes at seven different sites in the continuous and isolated permafrost zones in Mongolia. Lakes larger than 0.1 ha were analyzed using Corona KH-4, KH-4A and KH-4B (1962-1968),...This study presents thermokarst lake changes at seven different sites in the continuous and isolated permafrost zones in Mongolia. Lakes larger than 0.1 ha were analyzed using Corona KH-4, KH-4A and KH-4B (1962-1968), Landsat ETM + (1999-2001), and ALOS/AVNIR-2 (2006-2007) satellite imagery. Between 1962 and 2007, the total number and area of lakes increased by +21% (347 to 420), and +7% (3680 ha to 3936 ha) in the continuous permafrost zone, respectively. These changes correspond to the appearance of 85 new lakes (166 ha) during the last 45 years. In contrast, lakes in the isolated permafrost zone have decreased by –42% (118 to 68) in number and –12% (422 ha to 371 ha) in area from 1962 to 2007. The changes in lake area and number are likely attributed to shifts in climate regimes and local permafrost conditions. Since 1962, the mean annual air temperature and potential evapotranspiration have increased significantly in the northern continuous permafrost zone compared to the southern isolated permafrost zone. Due to ongoing atmospheric warming without any significant trend in annual precipitation, patches of ice-rich subsurface have thawed, and the number and area of lakes have accordingly developed in the continuous permafrost zone. Shrinking of thermokarst lakes in the isolated permafrost zone may be due to disappearing permafrost, deepening of the active layer, and increased water loss through surface evaporation and subsurface drainage.展开更多
Numerous new records of Ferganiella, Podozamites, and Schidolepium, including a new species, Ferganiella ivantsovii sp. nov., are described from the Early Jurassic(Toarcian) Middle Subformation of the Prisayan Formati...Numerous new records of Ferganiella, Podozamites, and Schidolepium, including a new species, Ferganiella ivantsovii sp. nov., are described from the Early Jurassic(Toarcian) Middle Subformation of the Prisayan Formation from the Euro-Sinian paleofloristic region in the Irkutsk Basin, Eastern Siberia, Russia. An analysis of the paleogeographic distribution of Ferganiella and Podozamites shows that both genera were the most diverse and numerous in the East Asian province of the Euro-Sinian region and in the Northern Chinese province of the Siberian region during the Early and Middle Jurassic. These phytochoria were located in the subtropical and temperate subtropical climate zones, which allows us to consider Ferganiella and Podozamites as thermophilic plants, which are important indicators of the Early Toarcian climatic optimum. Their abundance in the Irkutsk Basin thus may indicate Early Toarcian warming;further abundant Schidolepium cones, which produced Araucariacites pollen, typical for Euro-Sinian flora complement the scenario. Thus, the new finds are the first macrofloristic indicators of the Toarcian climatic optimum in the Irkutsk Basin.展开更多
文摘This study presents thermokarst lake changes at seven different sites in the continuous and isolated permafrost zones in Mongolia. Lakes larger than 0.1 ha were analyzed using Corona KH-4, KH-4A and KH-4B (1962-1968), Landsat ETM + (1999-2001), and ALOS/AVNIR-2 (2006-2007) satellite imagery. Between 1962 and 2007, the total number and area of lakes increased by +21% (347 to 420), and +7% (3680 ha to 3936 ha) in the continuous permafrost zone, respectively. These changes correspond to the appearance of 85 new lakes (166 ha) during the last 45 years. In contrast, lakes in the isolated permafrost zone have decreased by –42% (118 to 68) in number and –12% (422 ha to 371 ha) in area from 1962 to 2007. The changes in lake area and number are likely attributed to shifts in climate regimes and local permafrost conditions. Since 1962, the mean annual air temperature and potential evapotranspiration have increased significantly in the northern continuous permafrost zone compared to the southern isolated permafrost zone. Due to ongoing atmospheric warming without any significant trend in annual precipitation, patches of ice-rich subsurface have thawed, and the number and area of lakes have accordingly developed in the continuous permafrost zone. Shrinking of thermokarst lakes in the isolated permafrost zone may be due to disappearing permafrost, deepening of the active layer, and increased water loss through surface evaporation and subsurface drainage.
文摘Numerous new records of Ferganiella, Podozamites, and Schidolepium, including a new species, Ferganiella ivantsovii sp. nov., are described from the Early Jurassic(Toarcian) Middle Subformation of the Prisayan Formation from the Euro-Sinian paleofloristic region in the Irkutsk Basin, Eastern Siberia, Russia. An analysis of the paleogeographic distribution of Ferganiella and Podozamites shows that both genera were the most diverse and numerous in the East Asian province of the Euro-Sinian region and in the Northern Chinese province of the Siberian region during the Early and Middle Jurassic. These phytochoria were located in the subtropical and temperate subtropical climate zones, which allows us to consider Ferganiella and Podozamites as thermophilic plants, which are important indicators of the Early Toarcian climatic optimum. Their abundance in the Irkutsk Basin thus may indicate Early Toarcian warming;further abundant Schidolepium cones, which produced Araucariacites pollen, typical for Euro-Sinian flora complement the scenario. Thus, the new finds are the first macrofloristic indicators of the Toarcian climatic optimum in the Irkutsk Basin.