There are four subtypes. namely, Ia, Ib, Ic and Id of the Early Carboniferous bauxite deposits of the old weathered crust type in Guizhou, Sichuan, Hunan and Hubei provinces. They are all distributed in the Upper Yang...There are four subtypes. namely, Ia, Ib, Ic and Id of the Early Carboniferous bauxite deposits of the old weathered crust type in Guizhou, Sichuan, Hunan and Hubei provinces. They are all distributed in the Upper Yangtze old land. As a result of the Hunan-Guizhou palaeo-faulting, the crust on the northern side of the fault was uplifted and became land, thus suffering denudation. The bauxitic substances left in the weathered crust evolved and were reworked into bauxite. On the other hand, the crust on the southern side of the fault sank and remained to be part of an ocean. The bauxite deposits of Ia and Ib subtypes were formed by in-situ enrichment of residual bauxitic substances in the weathered crust of the old land, but bauxite deposits of Ic and Id subtypes resulted from transportation, accumulation and sedimentation of allothogenous bauxitic substances on the weathered crust of the old land. The processes of transportation may be distinguished as dry transportation and wet transportation, both of which proceeded under atmospheric conditions.展开更多
The physical space and viewing perception of streets and lanes in traditional towns of Sichuan and Chongqing in China are deeply influenced by the terrain conditions of the area.The adaptation of the geographical envi...The physical space and viewing perception of streets and lanes in traditional towns of Sichuan and Chongqing in China are deeply influenced by the terrain conditions of the area.The adaptation of the geographical environment with the change of the terrain height difference creates rich spatial rhythm changes in the spatial continuity and opening and closing processing of streets and lanes.The aspect ratio of building elevation and street front of frontage makes the street and lane scale adapt to the different functional requirements of business and life.At the same time,the changeable terrain height difference creates the composition level of street landscape perception of close shot,medium shot and long shot,which constitutes the unique regional charm of streets and lanes in traditional towns of Sichuan and Chongqing.展开更多
NCEP/NCAR data are utilized to analyze an extreme flood year(1998) and an extreme dry year(2006) in the Sichuan-Chongqing region(SCR) and the results are as follows. The positive divergence of South Asia High(SAH) is ...NCEP/NCAR data are utilized to analyze an extreme flood year(1998) and an extreme dry year(2006) in the Sichuan-Chongqing region(SCR) and the results are as follows. The positive divergence of South Asia High(SAH) is stronger in the flood year; the position of the ridge line of SAH is southward compared with the annual average; Western Pacific Subtropical High(WPSH) extends westward and its ridge line is southward. In the drought year, the positive divergence of SAH is weaker, its ridge line is northward, and the position of WPSH is also northward. As shown in the dynamics, in drought(flood) years, negative(positive) vorticity advection in the upper atmosphere can cause the atmosphere to ascend(descend), and anomalous circulation of SAH displays divergence(convergence), and anomalous circulation of the lower atmosphere shows convergence(divergence). Thermal structure of the atmosphere shows that there is warm(cold) temperature advection in the lower atmosphere, and the vertical distribution of diabetic heating causes SAH's local circulation to display convergence(divergence) and affects vertical motion of the lower atmosphere circulation eventually. To some extent, the two extreme years in the SCR is closely related to the vertical motion of atmosphere circulation and the variation of such vertical motion is caused by differences of interactions between SAH and lower atmosphere circulations.展开更多
The Sichuan-Yunnan-Guizhou(SYG)metallogenic province of southwest China is one of the most important Zn-Pb ore zones in China,with^200 Mt ZnPb ores at mean grades of 10 wt.%Zn and 5 wt.%Pb.The source and mechanism of ...The Sichuan-Yunnan-Guizhou(SYG)metallogenic province of southwest China is one of the most important Zn-Pb ore zones in China,with^200 Mt ZnPb ores at mean grades of 10 wt.%Zn and 5 wt.%Pb.The source and mechanism of the regional Zn-Pb mineralization remain controversial despite many investigations that have been conducted.The Wusihe Zn-Pb deposit is a representative large-scale Zn-Pb deposit in the northern SYG,which mainly occurs in the Dengying Formation and yields Zn-Pb resources of^3.7 Mt.In this paper,Zn and S isotopes,and Fe and Cd contents of sphalerite from the Wusihe deposit were investigated in an attempt to constrain the controls on Zn and S isotopic variations,the potential sources of ore-forming components,and the possible mineralization mechanisms.Both theδ66Zn andδ34S values in sphalerite from the Wusihe deposit increase systematically from the bottom to the top of the strata-bound orebodies.Such spatial evolution inδ66Zn andδ34S values of sphalerite can be attributed to isotopic Rayleigh fractionation during sphalerite precipitation with temperature variations.The strong correlations between the Zn-S isotopic compositions and Fe-Cd concentrations in sphalerite suggest that their variations were dominated by a similar mechanism.However,the Rayleigh fractionation mechanism cannot explain the spatial variations of Fe and Cd concentrations of sphalerite in this deposit.It is noted that the bottom and top sphalerites from the strata-bound orebodies document contrasting Zn and S isotopic compositions which correspond to the Zn and S isotopic characteristics of basement rocks and host rocks,respectively.Therefore,the mixing of two-source fluids with distinct Zn-S isotopic signatures was responsible for the spatial variations of Zn-S isotopic compositions of sphalerite from the Wusihe deposit.The fluids from basement rocks are characterized by relatively lighter Zn(~0.2‰)and S(~5‰)isotopic compositions while the fluids from host rocks are marked by relatively heavier Zn(~0.6‰)and S(~15‰)isotopic compositions.展开更多
Using the daily temperature data of 95 meteorological stations from Sichuan-Chongqing Region and its surrounding areas, this paper adopted these methods (e.g., linear regression, trend coefficient, geographical stati...Using the daily temperature data of 95 meteorological stations from Sichuan-Chongqing Region and its surrounding areas, this paper adopted these methods (e.g., linear regression, trend coefficient, geographical statistics, gray relational analysis and spatial analysis functions of GIS) to analyze the relations of temperature variability with topography, latitude and longitude. Moreover, the rank of gray correlation between temperature variability and elevation, longitude, latitude, topographic position and surface roughness also was meas- ured. These results indicated: (1) The elevation affected temperature variability most obviously, followed by latitude, and longitude. The slope of the linear regression between temperature change rate and elevation, latitude and longitude was 0.4142, 0.0293 and -0.3270, respectively (2) The rank of gray correlation between temperature change rate and geographic factors was elevation 〉 latitude 〉 surface roughness 〉 topographic position 〉 longitude. The gray correla- tion degree between temperature change rate and elevation was 0.865, followed by latitude with 0.796, and longitude with 0.671. (3) The rate of temperature change enhanced with the increase of elevation. Especially, the warming trend was significant in the plateau and mountain areas of western Sichuan, and mountain and valley areas of southwestern Sichuan (with the warming rate of 0.74℃/10a during the 1990s). However, there was a weak warming trend in Sichuan Basin and its surrounding low mountain and hilly areas. (4) The effects of latitude on temperature change rate presented the specific regulation, which the warming rate of low-latitude areas was more significant than that of high-latitude areas. However, they were consistent with the regulation that the increasing of low temperature controlled most of the warming trend, due to the effects of terrain and sically, temperature variability along longitude elevation on annual mean temperature. (5) Ba- direction resulted from the regular change of elevation along longitude. It was suggested that, in Sichuan-Chongqing Region, special features of temperature variability largely depended on the terrain complexity (e.g., undulations, mutations and roughness). The elevation level controlled only high or low annual mean temperature and the range of temperature change rate in the macro sense.展开更多
NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence o...NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation.展开更多
The study of the Xishuidong micromammalian fauna, found from Lantian, Shaanxi Province, indicates that both the northern slope of the Qinling Mountains and Sichuan_Guizhou area must belong to the same Oriental Realm i...The study of the Xishuidong micromammalian fauna, found from Lantian, Shaanxi Province, indicates that both the northern slope of the Qinling Mountains and Sichuan_Guizhou area must belong to the same Oriental Realm in middle_late Middle Pleistocene. The age of the Xishuidong fauna should be later than that of the Gongwangling fauna, and even a little later than that of the Zhongjiawo fauna in age. The fauna is related not only to that of layers 9 and 8 of Peking Man Locality in northern China, but also to the micromammals from Hexian Man Locality in southern China.展开更多
THE Simian Mountains Scenic Area sits in the southern Jiangjin District of Chongqing in southwest China,128 kilometers away from downtown Chongqing.It is a part of the Dalou Mountain Ranges on the Yunnan-Guizhou Plate...THE Simian Mountains Scenic Area sits in the southern Jiangjin District of Chongqing in southwest China,128 kilometers away from downtown Chongqing.It is a part of the Dalou Mountain Ranges on the Yunnan-Guizhou Plateau.Covering an area of 213 square kilometers,it is a national forest park and 5A-rated national tourist attraction.The park consists of the Wangxiang Pavilion.展开更多
基金A project financed by National Natural Science Foundation of China
文摘There are four subtypes. namely, Ia, Ib, Ic and Id of the Early Carboniferous bauxite deposits of the old weathered crust type in Guizhou, Sichuan, Hunan and Hubei provinces. They are all distributed in the Upper Yangtze old land. As a result of the Hunan-Guizhou palaeo-faulting, the crust on the northern side of the fault was uplifted and became land, thus suffering denudation. The bauxitic substances left in the weathered crust evolved and were reworked into bauxite. On the other hand, the crust on the southern side of the fault sank and remained to be part of an ocean. The bauxite deposits of Ia and Ib subtypes were formed by in-situ enrichment of residual bauxitic substances in the weathered crust of the old land, but bauxite deposits of Ic and Id subtypes resulted from transportation, accumulation and sedimentation of allothogenous bauxitic substances on the weathered crust of the old land. The processes of transportation may be distinguished as dry transportation and wet transportation, both of which proceeded under atmospheric conditions.
文摘The physical space and viewing perception of streets and lanes in traditional towns of Sichuan and Chongqing in China are deeply influenced by the terrain conditions of the area.The adaptation of the geographical environment with the change of the terrain height difference creates rich spatial rhythm changes in the spatial continuity and opening and closing processing of streets and lanes.The aspect ratio of building elevation and street front of frontage makes the street and lane scale adapt to the different functional requirements of business and life.At the same time,the changeable terrain height difference creates the composition level of street landscape perception of close shot,medium shot and long shot,which constitutes the unique regional charm of streets and lanes in traditional towns of Sichuan and Chongqing.
基金National Key Basic Research Development Program Project of China(2012CB417202)Key Project of National Natural Science Foundation(91337215)National Natural Science Foundation of China(41275051)
文摘NCEP/NCAR data are utilized to analyze an extreme flood year(1998) and an extreme dry year(2006) in the Sichuan-Chongqing region(SCR) and the results are as follows. The positive divergence of South Asia High(SAH) is stronger in the flood year; the position of the ridge line of SAH is southward compared with the annual average; Western Pacific Subtropical High(WPSH) extends westward and its ridge line is southward. In the drought year, the positive divergence of SAH is weaker, its ridge line is northward, and the position of WPSH is also northward. As shown in the dynamics, in drought(flood) years, negative(positive) vorticity advection in the upper atmosphere can cause the atmosphere to ascend(descend), and anomalous circulation of SAH displays divergence(convergence), and anomalous circulation of the lower atmosphere shows convergence(divergence). Thermal structure of the atmosphere shows that there is warm(cold) temperature advection in the lower atmosphere, and the vertical distribution of diabetic heating causes SAH's local circulation to display convergence(divergence) and affects vertical motion of the lower atmosphere circulation eventually. To some extent, the two extreme years in the SCR is closely related to the vertical motion of atmosphere circulation and the variation of such vertical motion is caused by differences of interactions between SAH and lower atmosphere circulations.
基金funded by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18030302)the National Key R&D Program of China (2017YFC0602503)the National Natural Science Foundation of China (U1812402, 41430315, 41573011, 41625006)
文摘The Sichuan-Yunnan-Guizhou(SYG)metallogenic province of southwest China is one of the most important Zn-Pb ore zones in China,with^200 Mt ZnPb ores at mean grades of 10 wt.%Zn and 5 wt.%Pb.The source and mechanism of the regional Zn-Pb mineralization remain controversial despite many investigations that have been conducted.The Wusihe Zn-Pb deposit is a representative large-scale Zn-Pb deposit in the northern SYG,which mainly occurs in the Dengying Formation and yields Zn-Pb resources of^3.7 Mt.In this paper,Zn and S isotopes,and Fe and Cd contents of sphalerite from the Wusihe deposit were investigated in an attempt to constrain the controls on Zn and S isotopic variations,the potential sources of ore-forming components,and the possible mineralization mechanisms.Both theδ66Zn andδ34S values in sphalerite from the Wusihe deposit increase systematically from the bottom to the top of the strata-bound orebodies.Such spatial evolution inδ66Zn andδ34S values of sphalerite can be attributed to isotopic Rayleigh fractionation during sphalerite precipitation with temperature variations.The strong correlations between the Zn-S isotopic compositions and Fe-Cd concentrations in sphalerite suggest that their variations were dominated by a similar mechanism.However,the Rayleigh fractionation mechanism cannot explain the spatial variations of Fe and Cd concentrations of sphalerite in this deposit.It is noted that the bottom and top sphalerites from the strata-bound orebodies document contrasting Zn and S isotopic compositions which correspond to the Zn and S isotopic characteristics of basement rocks and host rocks,respectively.Therefore,the mixing of two-source fluids with distinct Zn-S isotopic signatures was responsible for the spatial variations of Zn-S isotopic compositions of sphalerite from the Wusihe deposit.The fluids from basement rocks are characterized by relatively lighter Zn(~0.2‰)and S(~5‰)isotopic compositions while the fluids from host rocks are marked by relatively heavier Zn(~0.6‰)and S(~15‰)isotopic compositions.
基金Natural Science Foundation of Chongqing, No.2010JJ0069 Science and Technology Great Special Project on Controlling and Fathering Water Pollution during the National 12th Five-year Plan, No.2012ZX07104-003
文摘Using the daily temperature data of 95 meteorological stations from Sichuan-Chongqing Region and its surrounding areas, this paper adopted these methods (e.g., linear regression, trend coefficient, geographical statistics, gray relational analysis and spatial analysis functions of GIS) to analyze the relations of temperature variability with topography, latitude and longitude. Moreover, the rank of gray correlation between temperature variability and elevation, longitude, latitude, topographic position and surface roughness also was meas- ured. These results indicated: (1) The elevation affected temperature variability most obviously, followed by latitude, and longitude. The slope of the linear regression between temperature change rate and elevation, latitude and longitude was 0.4142, 0.0293 and -0.3270, respectively (2) The rank of gray correlation between temperature change rate and geographic factors was elevation 〉 latitude 〉 surface roughness 〉 topographic position 〉 longitude. The gray correla- tion degree between temperature change rate and elevation was 0.865, followed by latitude with 0.796, and longitude with 0.671. (3) The rate of temperature change enhanced with the increase of elevation. Especially, the warming trend was significant in the plateau and mountain areas of western Sichuan, and mountain and valley areas of southwestern Sichuan (with the warming rate of 0.74℃/10a during the 1990s). However, there was a weak warming trend in Sichuan Basin and its surrounding low mountain and hilly areas. (4) The effects of latitude on temperature change rate presented the specific regulation, which the warming rate of low-latitude areas was more significant than that of high-latitude areas. However, they were consistent with the regulation that the increasing of low temperature controlled most of the warming trend, due to the effects of terrain and sically, temperature variability along longitude elevation on annual mean temperature. (5) Ba- direction resulted from the regular change of elevation along longitude. It was suggested that, in Sichuan-Chongqing Region, special features of temperature variability largely depended on the terrain complexity (e.g., undulations, mutations and roughness). The elevation level controlled only high or low annual mean temperature and the range of temperature change rate in the macro sense.
基金Supported by the National Natural Science Foundation of China(41505078,41275080,91537214,41275079,41305077,and 41405069)Scientific Research Fund of CUIT(KYTZ201639)
文摘NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation.
文摘The study of the Xishuidong micromammalian fauna, found from Lantian, Shaanxi Province, indicates that both the northern slope of the Qinling Mountains and Sichuan_Guizhou area must belong to the same Oriental Realm in middle_late Middle Pleistocene. The age of the Xishuidong fauna should be later than that of the Gongwangling fauna, and even a little later than that of the Zhongjiawo fauna in age. The fauna is related not only to that of layers 9 and 8 of Peking Man Locality in northern China, but also to the micromammals from Hexian Man Locality in southern China.
文摘THE Simian Mountains Scenic Area sits in the southern Jiangjin District of Chongqing in southwest China,128 kilometers away from downtown Chongqing.It is a part of the Dalou Mountain Ranges on the Yunnan-Guizhou Plateau.Covering an area of 213 square kilometers,it is a national forest park and 5A-rated national tourist attraction.The park consists of the Wangxiang Pavilion.