To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is dif...In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field.展开更多
Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and th...Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and their control on key hydrocarbon accumulation factors, the distribution law of medium-and large-sized marine carbonate gas fields in the basin was examined and the exploration direction was pointed out. Through the analysis of the periodic stretching-uplifting background, it is concluded that five large scale paleo-rifts, three large scale paleo-uplifts, five large scale paleo erosion surfaces were formed in the marine craton stage of Sichuan Basin, and these geological units control the key reservoir forming factors of medium and large sized gas fields:(1) Large-scale paleo-rifts control the distribution of high-quality hydrocarbon generation centers.(2) The margin of large-scale paleo-rifts, high position of paleo-uplifts and paleo erosion surfaces control the distribution of high-quality reservoirs.(3) Large-scale paleo-rifts, paleo-uplifts, paleo erosion surfaces and present tectonic setting jointly control the formation of many types of large and medium-sized traps.(4) Natural gas accumulation is controlled by the inheritance evolution of traps in large geological units. Based on the comparative analysis of the distribution characteristics of medium-and large-sized gas fields and large geological units, it is proposed that the superimposition relationship between single or multiple geological units and the present structure controls the distribution of medium-and large-sized gas fields, and the "three paleo" superimposed area is the most advantageous. According to the above rules, the main exploration fields and directions of medium-and large-sized marine carbonate gas fields in Sichuan Basin include periphery of Deyang-Anyue paleo-rift, eastern margin of Longmenshan paleo-rift, margins of Kaijiang-Liangping oceanic trough and Chengkou-western Hubei oceanic trough, the high part of the subaqueous paleo-uplifts around Central Sichuan, paleo erosion surfaces of the top boundary of Maokou Formation in eastern and southern Sichuan Basin, paleo erosion surfaces of the top boundary of the Leikoupo Formation in central and western Sichuan Basin.展开更多
The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is main...The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%-98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5th member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4th member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3rd and 4th members of the Xujiahe Formation. The gases reservoired in the 2nd member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4th member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.展开更多
In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and d...In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and diagenetic evolution caused the Changxing Formation to form lithologic traps, with good reservoirs such as dissolved bioclastic dolostone and dissolved pore dolostone. The Changxing Formation gas reservoir is a pseudo-layered porous lithologic gas reservoir under pressure depletion drive, with high H2S and moderate CO2 contents. This paper predictes that the conducting system for the Changxing Formation gas reservoir is possibly composed of the pores and microfractures in the Changxing Formation reservoir, the top erosional surface of the Changxing Formation, as well as the micropores and microfractures in the underlying formations. The Changxing Formation reservoir has experienced 3 hydrocarbon charging stages. This paper suggests that diffusion is the major formation mechanism for this gas reservoir. In the Middle and Late Yanshanian, the Yuanba area entered the major gas charging stage. The gas migrated mainly through diffusion and with the assistance of seepage flow in small faults and microfractures from the source rocks and the other oil-bearing strata to the Changxing Formation carbonate reservoir rocks, forming lithologic gas pools. In the Himalayan Epoch, the lithologic traps were uplifted as a whole without strong modification or overlapping, and were favorable for gas preservation.展开更多
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec...The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.展开更多
The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify th...The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.展开更多
The Fuling shale gas field in China is the largest shale gas field as well as the largest of its type discovered in any Lower Paleozoic formation.In this study,the geology and production of the upper and lower gas lay...The Fuling shale gas field in China is the largest shale gas field as well as the largest of its type discovered in any Lower Paleozoic formation.In this study,the geology and production of the upper and lower gas layers in the Fuling shale gas field are evaluated in terms of structure,shale quality,fault,initial production,and estimated ultimate recovery(EUR).The shale in the lower gas layer of the Jiaoshiba anticline is a high-quality reservoir,where the space is dominated by organic pores in kerogen,and the gas content is high.The shale gas wells reveal relatively high initial production and EUR.However,the shale in the upper gas layer of the Jiaoshiba anticline has reservoir space mainly composed of clay mineral pores and organic pores within bitumen,and the gas content is low.In terms of structure,primary gas migration may occur in the upper gas layer,resulting in free gas accumulation in the structural high,where the development effects are generally better than those in the structural low.The lower gas layer in the Pingqiao anticline,is the main interval for shale gas accumulation and development due to the high-quality shale.Under the influence of faults,the efficiency of exploration wells emplaced on top of the anticline is much lower a compared with those in the flanks.The residual synclines close to the Sichuan Basin,including the Baima and Baitao anticlines,are characterized by more recent uplifts,larger area,greater distance from the deep and large faults,and early fracture closure.Therefore,we recommend that the shale gas exploration and development should be carried out preferentially in areas close to the center of the residual synclines,featuring relatively high-pressure coefficient and moderate burial depth.展开更多
The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied....The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied. Through petrologic investigation, diagenetic phases are divided into four stages, i.e., near-surface, pre-oil window, oil window, and gas window. The Adobe Photoshop system is used to quantify the rock texture components, porosity constitutions and the influences of diageneses on reservoir porosity. Porosity evolution curves are quantitatively recovered. The Feixianguan reservoir porosities are mainly created by early meteoric dissolution, dolomitization, and organic acids dissolution. Dissolution during deep burial is insignificant. Pores are formed in near-surface and pre-oil window stages and effectively preserved till present. This result may be of great significance to the further exploration of deeply buried carbonate reservoirs not only in NE Sichuan Basin, but also around the world.展开更多
To solve the difficulties in exploration and development in Yuanba ultra-deep gas field in Sichuan Basin,SW China,the article studies the mechanism of quality reef reservoirs development and gas accumulation and innov...To solve the difficulties in exploration and development in Yuanba ultra-deep gas field in Sichuan Basin,SW China,the article studies the mechanism of quality reef reservoirs development and gas accumulation and innovates techniques in ultra-deep seismic exploration,drilling,completion and testing.Through the reconstruction of dynamic depositional evolution process and regional depositional framework of homoclinal ramp-rimmed platform in Upper Permian,three theories are put forward:first,"early beach-late reef,multiple stacking,arrangement in rows and belts"is the sedimentary mode for the reservoirs in the Changxing Formation of Yuanba area;second,"dissolution in early exposure stage and dolomitization during shallow burial giving rise to the pores in matrix,overpressure caused by cracking of liquid hydrocarbon during deep burial inducing fractures"is the reservoirs development mechanisms;third,"coupling of pores and fractures"controls the development of high quality reservoirs in deep formations.From correlation of oil and source rock,it is concluded that the Wujiaping Formation and Dalong Formation of deep-water continental shelf are the major source rocks in the Permian of northern Sichuan Basin.The hydrocarbon accumulation mode in ultra-deep formations of low-deformation zones is characterized by"three-micro(micro-fault,micro-fracture interbed crack)migration,near-source enrichment,and persistent preservation".Through seismic inversion using the pore structure parameters of pore-fracture diadactic structure model,the high production gas enrichment area in Yuanba gas field is 98.5 km^2.Moreover,special well structure and unconventional well structure were used to deal with multiple pressure systems and sealing of complex formations.A kind of integral,high pressure resistant FF-level gas wellhead and ground safety linkage device was developed to accomplish safe and environmentally friendly gas production.展开更多
Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous type...Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids.展开更多
Objective Bitumen is generally associated with oil and gas, which was originally used as an indicator of hydrocarbon reservoirs. With the progress of organic geochemical measuring and testing techniques, bitumen, esp...Objective Bitumen is generally associated with oil and gas, which was originally used as an indicator of hydrocarbon reservoirs. With the progress of organic geochemical measuring and testing techniques, bitumen, especially solid bitumen sampled from reservoirs, has been proved to be closely related to the evolution of hydrocarbon reservoirs. The Sinian cores collected from the Anyue gas field contain abundant pores, vugs and fractures, which are filled with a mass of solid bitumen of two epochs and dolomite in between. This work focused on the characteristics of different generations of bitumen and the genesis, in an effort to better understand the process of the Sinian gas accumulation in the Anyue gas field.展开更多
A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable...A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable resources are at least 5 billion barrels of oil equivalent.By the end of 2019,the total output of oil and gas in Sichuan Basin had been 6569×10^(8) m^(3),the ratio of gas to oil was 80:1,and the total remaining recoverable resources reached 136404×10^(8) m^(3),which makes it as a second-tier super basin.Because the output is mainly gas,it is a super gas basin.The reason why the Sichuan Basin is a super gas basin is that it has four advantages:(1)The advantage of gas source rocks:it has the most gas source rocks(9 sets)among all the basins in China.(2)The advantage of resource quantity:it has the most total remaining recoverable resources among all the basins in China(136404×10^(8) m^(3)).(3)The advantage of large gas fields:it has the most large gas fields(27)among all the basins in China.(4)The advantage of total production:by the end of 2019,the total gas production had been 6487.8×10^(8) m^(3),which ranked the first among all the basins in China.There are four major breakthroughs in natural gas exploration in Sichuan Basin:(1)Breakthrough in shale gas:shale gas was firstly found in the Ordovician Wufeng-Silurian Longmaxi formations in China.(2)Breakthrough in tight sandstone gas:the Triassic Xu2 Member gas reservoir in Zhongba gas field is the first high recovery tight sandstone gas reservoir in China.(3)Breakthrough in giant carbonate gas fields.(4)Breakthrough in ultra-deep gas reservoir.These breakthroughs have led to important progress in different basins across the country.Super basins are classified according to three criteria:accumulative oil and gas production,remaining recoverable resources,tectonic attributes of the basin and the proportion of oil and gas in accumulative oil and gas production.展开更多
It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperatur...It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatures of 177℃ to 220℃. They could be cracked into dry gas (methane), and the same with the source rocks of the Permian and O3w-S1l because they all reached the pyrolysis stage under such conditions. Consequently, the present natural gas (methane) reservoirs were developed.展开更多
The formation of large and middle gas fields in Sichuan Basin is investigated based on source controlling theory and hydrocarbon source systems. It is indicated that (?)1, S1, P1, P2 and T3 are the main source beds an...The formation of large and middle gas fields in Sichuan Basin is investigated based on source controlling theory and hydrocarbon source systems. It is indicated that (?)1, S1, P1, P2 and T3 are the main source beds and (?)1/Z2d, C2h/S1, P1/P2, P2ch/P2, T1,2/P, T3x/T3x are important hydrocarbon source systems in the basin. All these source systems are the prospective formations and exploration spaces of large and middle gas fields. It is also emphasized that hydrocarbon generation intensity is the most important geochemical factor to estimate large and middle gas fields.展开更多
新一代静止气象卫星葵花8号(Himawari-8)上搭载的静止轨道成像仪AHI(Advanced Himawari Imager)凭借其高时空分辨率可以对重庆地区暴雨进行连续观测。本文选取2019年4月19日的一次区域性暴雨天气过程为试验个例,采用WRF(Weather Researc...新一代静止气象卫星葵花8号(Himawari-8)上搭载的静止轨道成像仪AHI(Advanced Himawari Imager)凭借其高时空分辨率可以对重庆地区暴雨进行连续观测。本文选取2019年4月19日的一次区域性暴雨天气过程为试验个例,采用WRF(Weather Research and Forecasting)中尺度模式进行数值模拟。基于WRFDA(Weather Research and Forecasting model Data Assimilation)同化系统对葵花8号静止气象卫星的AHI辐射率资料进行相应的质量控制和云检测,进而开展循环同化试验,考察卫星资料同化对这次强对流天气过程预报结果的改进。结果表明在同化AHI红外辐射率资料之后,辐射传输模式模拟的亮温和观测亮温更为接近。此外,AHI水汽通道辐射率资料同化有效提高了对各层高度上的风场、水汽场、雷达回波等要素特征的分析效果,并且使模式的初始条件更逼近真实的大气状态。研究发现同化AHI水汽通道辐射率资料后模拟的降水整体分布与实际情况更为接近,主要雨带位置以及强降水中心的精确程度显著高于背景场的预报效果。经过卫星同化的试验可以预报出控制试验漏报的强降水中心,并且有效地削弱了四川东部和甘肃东南部的虚假强降水范围以及强降水中心。本研究可以为川渝地区暴雨天气数值预报系统中的静止红外辐射率资料的预处理和同化应用提供有益的参考。展开更多
The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representa- tive oolitic reservoir, which has been the biggest marinesourced ...The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representa- tive oolitic reservoir, which has been the biggest marinesourced gasfield so far in China (discovered in 2003 with proven gas reserves greater than 350× 10^8 m3). This study combines core, thin section, and scanning electron microscopy observations, and geochemical analysis (C, O, and Sr isotopes) in order to investigate the basic characteristics and formation mechanisms of the reservoir. Observations indicate that platform margin oolitic dolomites are the most important reservoir rocks. Porosity is dominated by intergranular and intragranular solution, and moldic pore. The dolomites are characterized by medium porosity and permeability, averaging at approximately 9% and 29.7 mD, respectively. ^87Sr/^86Sr (0.707536-0.707934) and δ^13CpDB (1.8 ‰--3.5 ‰) isotopic values indicate that the dolomitization fluid is predominantly concentrated seawater by evaporation, and the main mechanism for the oolitic dolomite formation is seepage reflux at an early stage of eodiagenesis. Both sedimentation and diagenesis (e.g., dolomitization and dissolution) have led to the formation of high-quality rocks to different degrees. Dolomite formation may have little contribution, karst may have had both positive and negative influences, and burial dissolution-TSR (thermochemical sulfate reduction) may not impact widely. The preservation of primary intergranular pores and dissolution by meteoric or mixed waters at the early stage of eogenesis are the main influences. This study may assist oil and gas explorationactivities in the Puguang area and in other areas withdolomitic reservoirs.展开更多
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金Supported by the Sinopec Science and Technology Project(P22183).
文摘In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field.
基金Supported by the China National Science and Technology Major Project(2016ZX05007004,2016ZX05004005)
文摘Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and their control on key hydrocarbon accumulation factors, the distribution law of medium-and large-sized marine carbonate gas fields in the basin was examined and the exploration direction was pointed out. Through the analysis of the periodic stretching-uplifting background, it is concluded that five large scale paleo-rifts, three large scale paleo-uplifts, five large scale paleo erosion surfaces were formed in the marine craton stage of Sichuan Basin, and these geological units control the key reservoir forming factors of medium and large sized gas fields:(1) Large-scale paleo-rifts control the distribution of high-quality hydrocarbon generation centers.(2) The margin of large-scale paleo-rifts, high position of paleo-uplifts and paleo erosion surfaces control the distribution of high-quality reservoirs.(3) Large-scale paleo-rifts, paleo-uplifts, paleo erosion surfaces and present tectonic setting jointly control the formation of many types of large and medium-sized traps.(4) Natural gas accumulation is controlled by the inheritance evolution of traps in large geological units. Based on the comparative analysis of the distribution characteristics of medium-and large-sized gas fields and large geological units, it is proposed that the superimposition relationship between single or multiple geological units and the present structure controls the distribution of medium-and large-sized gas fields, and the "three paleo" superimposed area is the most advantageous. According to the above rules, the main exploration fields and directions of medium-and large-sized marine carbonate gas fields in Sichuan Basin include periphery of Deyang-Anyue paleo-rift, eastern margin of Longmenshan paleo-rift, margins of Kaijiang-Liangping oceanic trough and Chengkou-western Hubei oceanic trough, the high part of the subaqueous paleo-uplifts around Central Sichuan, paleo erosion surfaces of the top boundary of Maokou Formation in eastern and southern Sichuan Basin, paleo erosion surfaces of the top boundary of the Leikoupo Formation in central and western Sichuan Basin.
基金financially supported by the National Natural Science Foundation of China (grants No.41625009, 41302118 and U1663201)the National Key Foundational Research and Development Project (Grant No:2016YFB0600804)the National Science & Technology Special Project (grant No.2016ZX05002-006)
文摘The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%-98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5th member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4th member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3rd and 4th members of the Xujiahe Formation. The gases reservoired in the 2nd member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4th member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.
基金supported by the National Major Fundamental Research and Development project(No. 2005CB422100)the project of Southern Exploration Division Company,SINOPEC
文摘In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and diagenetic evolution caused the Changxing Formation to form lithologic traps, with good reservoirs such as dissolved bioclastic dolostone and dissolved pore dolostone. The Changxing Formation gas reservoir is a pseudo-layered porous lithologic gas reservoir under pressure depletion drive, with high H2S and moderate CO2 contents. This paper predictes that the conducting system for the Changxing Formation gas reservoir is possibly composed of the pores and microfractures in the Changxing Formation reservoir, the top erosional surface of the Changxing Formation, as well as the micropores and microfractures in the underlying formations. The Changxing Formation reservoir has experienced 3 hydrocarbon charging stages. This paper suggests that diffusion is the major formation mechanism for this gas reservoir. In the Middle and Late Yanshanian, the Yuanba area entered the major gas charging stage. The gas migrated mainly through diffusion and with the assistance of seepage flow in small faults and microfractures from the source rocks and the other oil-bearing strata to the Changxing Formation carbonate reservoir rocks, forming lithologic gas pools. In the Himalayan Epoch, the lithologic traps were uplifted as a whole without strong modification or overlapping, and were favorable for gas preservation.
文摘The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.
基金The study associated with this paper was supported by projects of China Geological Survey(DD20190085,DD20160183,1212011120976).
文摘The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.
基金supported by the National Natural Science Foundation of China(Grant No.41872124 and 91755211)and several Sinopec in-house projects.We thank Sinopec Petroleum Exploration and Production Research Institute,Sinopec Exploration Company,Sinopec Jianghan Oilfield,and Sinopec East China Petroleum Company for valuable data and information.
文摘The Fuling shale gas field in China is the largest shale gas field as well as the largest of its type discovered in any Lower Paleozoic formation.In this study,the geology and production of the upper and lower gas layers in the Fuling shale gas field are evaluated in terms of structure,shale quality,fault,initial production,and estimated ultimate recovery(EUR).The shale in the lower gas layer of the Jiaoshiba anticline is a high-quality reservoir,where the space is dominated by organic pores in kerogen,and the gas content is high.The shale gas wells reveal relatively high initial production and EUR.However,the shale in the upper gas layer of the Jiaoshiba anticline has reservoir space mainly composed of clay mineral pores and organic pores within bitumen,and the gas content is low.In terms of structure,primary gas migration may occur in the upper gas layer,resulting in free gas accumulation in the structural high,where the development effects are generally better than those in the structural low.The lower gas layer in the Pingqiao anticline,is the main interval for shale gas accumulation and development due to the high-quality shale.Under the influence of faults,the efficiency of exploration wells emplaced on top of the anticline is much lower a compared with those in the flanks.The residual synclines close to the Sichuan Basin,including the Baima and Baitao anticlines,are characterized by more recent uplifts,larger area,greater distance from the deep and large faults,and early fracture closure.Therefore,we recommend that the shale gas exploration and development should be carried out preferentially in areas close to the center of the residual synclines,featuring relatively high-pressure coefficient and moderate burial depth.
文摘The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied. Through petrologic investigation, diagenetic phases are divided into four stages, i.e., near-surface, pre-oil window, oil window, and gas window. The Adobe Photoshop system is used to quantify the rock texture components, porosity constitutions and the influences of diageneses on reservoir porosity. Porosity evolution curves are quantitatively recovered. The Feixianguan reservoir porosities are mainly created by early meteoric dissolution, dolomitization, and organic acids dissolution. Dissolution during deep burial is insignificant. Pores are formed in near-surface and pre-oil window stages and effectively preserved till present. This result may be of great significance to the further exploration of deeply buried carbonate reservoirs not only in NE Sichuan Basin, but also around the world.
基金Supported by the National Natural Science Foundation of China(U1663210)
文摘To solve the difficulties in exploration and development in Yuanba ultra-deep gas field in Sichuan Basin,SW China,the article studies the mechanism of quality reef reservoirs development and gas accumulation and innovates techniques in ultra-deep seismic exploration,drilling,completion and testing.Through the reconstruction of dynamic depositional evolution process and regional depositional framework of homoclinal ramp-rimmed platform in Upper Permian,three theories are put forward:first,"early beach-late reef,multiple stacking,arrangement in rows and belts"is the sedimentary mode for the reservoirs in the Changxing Formation of Yuanba area;second,"dissolution in early exposure stage and dolomitization during shallow burial giving rise to the pores in matrix,overpressure caused by cracking of liquid hydrocarbon during deep burial inducing fractures"is the reservoirs development mechanisms;third,"coupling of pores and fractures"controls the development of high quality reservoirs in deep formations.From correlation of oil and source rock,it is concluded that the Wujiaping Formation and Dalong Formation of deep-water continental shelf are the major source rocks in the Permian of northern Sichuan Basin.The hydrocarbon accumulation mode in ultra-deep formations of low-deformation zones is characterized by"three-micro(micro-fault,micro-fracture interbed crack)migration,near-source enrichment,and persistent preservation".Through seismic inversion using the pore structure parameters of pore-fracture diadactic structure model,the high production gas enrichment area in Yuanba gas field is 98.5 km^2.Moreover,special well structure and unconventional well structure were used to deal with multiple pressure systems and sealing of complex formations.A kind of integral,high pressure resistant FF-level gas wellhead and ground safety linkage device was developed to accomplish safe and environmentally friendly gas production.
文摘Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids.
基金supported by the National Natural Science Foundation of China(grant No.41572133)National Key Basic Research and Development Project (grant No.2012CB214805)
文摘Objective Bitumen is generally associated with oil and gas, which was originally used as an indicator of hydrocarbon reservoirs. With the progress of organic geochemical measuring and testing techniques, bitumen, especially solid bitumen sampled from reservoirs, has been proved to be closely related to the evolution of hydrocarbon reservoirs. The Sinian cores collected from the Anyue gas field contain abundant pores, vugs and fractures, which are filled with a mass of solid bitumen of two epochs and dolomite in between. This work focused on the characteristics of different generations of bitumen and the genesis, in an effort to better understand the process of the Sinian gas accumulation in the Anyue gas field.
基金Supported by the Consultation and Evaluation Project of Department of Geosciences,Chinese Academy of Sciences(2018-G01-B-005)State key R&D Project(2019YFC1805505)+1 种基金National Natural Science Foundation of China(41872122)Outstanding Youth Program of National Natural Science Foundation of China(41625009)。
文摘A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable resources are at least 5 billion barrels of oil equivalent.By the end of 2019,the total output of oil and gas in Sichuan Basin had been 6569×10^(8) m^(3),the ratio of gas to oil was 80:1,and the total remaining recoverable resources reached 136404×10^(8) m^(3),which makes it as a second-tier super basin.Because the output is mainly gas,it is a super gas basin.The reason why the Sichuan Basin is a super gas basin is that it has four advantages:(1)The advantage of gas source rocks:it has the most gas source rocks(9 sets)among all the basins in China.(2)The advantage of resource quantity:it has the most total remaining recoverable resources among all the basins in China(136404×10^(8) m^(3)).(3)The advantage of large gas fields:it has the most large gas fields(27)among all the basins in China.(4)The advantage of total production:by the end of 2019,the total gas production had been 6487.8×10^(8) m^(3),which ranked the first among all the basins in China.There are four major breakthroughs in natural gas exploration in Sichuan Basin:(1)Breakthrough in shale gas:shale gas was firstly found in the Ordovician Wufeng-Silurian Longmaxi formations in China.(2)Breakthrough in tight sandstone gas:the Triassic Xu2 Member gas reservoir in Zhongba gas field is the first high recovery tight sandstone gas reservoir in China.(3)Breakthrough in giant carbonate gas fields.(4)Breakthrough in ultra-deep gas reservoir.These breakthroughs have led to important progress in different basins across the country.Super basins are classified according to three criteria:accumulative oil and gas production,remaining recoverable resources,tectonic attributes of the basin and the proportion of oil and gas in accumulative oil and gas production.
文摘It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatures of 177℃ to 220℃. They could be cracked into dry gas (methane), and the same with the source rocks of the Permian and O3w-S1l because they all reached the pyrolysis stage under such conditions. Consequently, the present natural gas (methane) reservoirs were developed.
基金Project supported by the"85-102" Chinese National Key Science and Technology Project
文摘The formation of large and middle gas fields in Sichuan Basin is investigated based on source controlling theory and hydrocarbon source systems. It is indicated that (?)1, S1, P1, P2 and T3 are the main source beds and (?)1/Z2d, C2h/S1, P1/P2, P2ch/P2, T1,2/P, T3x/T3x are important hydrocarbon source systems in the basin. All these source systems are the prospective formations and exploration spaces of large and middle gas fields. It is also emphasized that hydrocarbon generation intensity is the most important geochemical factor to estimate large and middle gas fields.
文摘新一代静止气象卫星葵花8号(Himawari-8)上搭载的静止轨道成像仪AHI(Advanced Himawari Imager)凭借其高时空分辨率可以对重庆地区暴雨进行连续观测。本文选取2019年4月19日的一次区域性暴雨天气过程为试验个例,采用WRF(Weather Research and Forecasting)中尺度模式进行数值模拟。基于WRFDA(Weather Research and Forecasting model Data Assimilation)同化系统对葵花8号静止气象卫星的AHI辐射率资料进行相应的质量控制和云检测,进而开展循环同化试验,考察卫星资料同化对这次强对流天气过程预报结果的改进。结果表明在同化AHI红外辐射率资料之后,辐射传输模式模拟的亮温和观测亮温更为接近。此外,AHI水汽通道辐射率资料同化有效提高了对各层高度上的风场、水汽场、雷达回波等要素特征的分析效果,并且使模式的初始条件更逼近真实的大气状态。研究发现同化AHI水汽通道辐射率资料后模拟的降水整体分布与实际情况更为接近,主要雨带位置以及强降水中心的精确程度显著高于背景场的预报效果。经过卫星同化的试验可以预报出控制试验漏报的强降水中心,并且有效地削弱了四川东部和甘肃东南部的虚假强降水范围以及强降水中心。本研究可以为川渝地区暴雨天气数值预报系统中的静止红外辐射率资料的预处理和同化应用提供有益的参考。
文摘The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representa- tive oolitic reservoir, which has been the biggest marinesourced gasfield so far in China (discovered in 2003 with proven gas reserves greater than 350× 10^8 m3). This study combines core, thin section, and scanning electron microscopy observations, and geochemical analysis (C, O, and Sr isotopes) in order to investigate the basic characteristics and formation mechanisms of the reservoir. Observations indicate that platform margin oolitic dolomites are the most important reservoir rocks. Porosity is dominated by intergranular and intragranular solution, and moldic pore. The dolomites are characterized by medium porosity and permeability, averaging at approximately 9% and 29.7 mD, respectively. ^87Sr/^86Sr (0.707536-0.707934) and δ^13CpDB (1.8 ‰--3.5 ‰) isotopic values indicate that the dolomitization fluid is predominantly concentrated seawater by evaporation, and the main mechanism for the oolitic dolomite formation is seepage reflux at an early stage of eodiagenesis. Both sedimentation and diagenesis (e.g., dolomitization and dissolution) have led to the formation of high-quality rocks to different degrees. Dolomite formation may have little contribution, karst may have had both positive and negative influences, and burial dissolution-TSR (thermochemical sulfate reduction) may not impact widely. The preservation of primary intergranular pores and dissolution by meteoric or mixed waters at the early stage of eogenesis are the main influences. This study may assist oil and gas explorationactivities in the Puguang area and in other areas withdolomitic reservoirs.