Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo...Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.展开更多
In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS...In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.展开更多
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ...Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.展开更多
Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated...Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data.展开更多
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ...The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.展开更多
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa...This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.展开更多
Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in ...Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in turbidite and other debrite deposits. By high-resolution imaging, three sedimentary processes were distinguished with distinct acoustic features. 1. Slumps and slides occur with contrasting backscatter, rough surface textures, blockings, and acoustic shadows at headwalls. They are very extensive and often in lobate form downslope. 2. Debris flow has uniform, general medium backscatter, sometimes showing marbling/lineation in lobate form. 3. Turbidity current is characterized by low backscatter confined to the channel as acoustic signal is attenuated. Regional tectonics must be the dominating factor that controls deposition pattern in this area.展开更多
Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, fo...Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.展开更多
A new monostatic array system taking advantage of diverse waveforms to improve the performance of underwater tar- get localization is proposed. Unlike the coherent signals between different elements in common active a...A new monostatic array system taking advantage of diverse waveforms to improve the performance of underwater tar- get localization is proposed. Unlike the coherent signals between different elements in common active array, the transmitted signals from different elements here are spatially orthogonal waveforms which allow for array processing in the transit mode and result in an extension of array aperture. The mathematical derivation of Capon estimator for this sonar system is described in detail. And the performance of this orthogonal-waveform based sonar is an- alyzed and compared with that of its phased-array counterpart by water tank experiments. Experimental results show that this sonar system could achieve 12 dB-15 dB additional array gain over its phased-array counterpart, which means a doubling of maximum detection range. Moreover, the angular resolution is significantly improved at lower SNR.展开更多
For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIM...For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.展开更多
The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibit...The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.展开更多
The performance of a sonar system is closely related to the marine environment and the target characteristics. When dealing with the echoes of a traditional active sonar system, the sonar designers often do not take i...The performance of a sonar system is closely related to the marine environment and the target characteristics. When dealing with the echoes of a traditional active sonar system, the sonar designers often do not take into account the influence of the environmental information and prior knowledge perceived by sonar receivers, making it difficult to obtain desired processing results. Based on the basic principle and key technology of sonar, this paper proposed a cognition-based intelligent sonar system in theory--cognitive sonar. Cognitive sonar is capable of jointly optimizing the transmission waveform and receiver according to the changes of environment so that its detection and identification performance can be significantly improved.展开更多
Sound pressure amplitude will be attenuated with propagation distance in a certain rule when sound wave is propagated in shallow sea.When processing the attenuated signal,time-variant gain circuit is usually used to c...Sound pressure amplitude will be attenuated with propagation distance in a certain rule when sound wave is propagated in shallow sea.When processing the attenuated signal,time-variant gain circuit is usually used to compensate its diffusion loss.In this paper,spherical diffusion loss is compensated by digital potentiometer and operational circuit and further investigation is also made on compensation of cylindrical diffusion loss and transition from spherical diffusion loss to cylindrical diffusion loss.Finally,a new compensation model is proposed for unknown propagation loss for the purpose of adjusting the dynamic range of signal to meet the requirement of A/D conversion.展开更多
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ...Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.展开更多
According to the characteristics of sonar image data with manifold feature,the sonar image detection method based on two-phase manifold partner clustering algorithm is proposed. Firstly,K-means block clustering based ...According to the characteristics of sonar image data with manifold feature,the sonar image detection method based on two-phase manifold partner clustering algorithm is proposed. Firstly,K-means block clustering based on euclidean distance is proposed to reduce the data set. Mean value,standard deviation,and gray minimum value are considered as three features based on the relatinship between clustering model and data structure. Then K-means clustering algorithm based on manifold distance is utilized clustering again on the reduced data set to improve the detection efficiency. In K-means clustering algorithm based on manifold distance,line segment length on the manifold is analyzed,and a new power function line segment length is proposed to decrease the computational complexity. In order to quickly calculate the manifold distance,new allsource shortest path as the pretreatment of efficient algorithm is proposed. Based on this,the spatial feature of the image block is added in the three features to get the final precise partner clustering algorithm. The comparison with the other typical clustering algorithms demonstrates that the proposed algorithm gets good detection result. And it has better adaptability by experiments of the different real sonar images.展开更多
The morphological characteristics of small-scale bedforms were measured by means of an acoustic profiling sonar on the Dafeng tidal flat, Jiangsu, in 2009, and in the Jiulong Estuary, Xiamen, in 2010, respectively. T...The morphological characteristics of small-scale bedforms were measured by means of an acoustic profiling sonar on the Dafeng tidal flat, Jiangsu, in 2009, and in the Jiulong Estuary, Xiamen, in 2010, respectively. The "multi-threshold value" method was utilized to reveal the morphological undulations along which bedforms were present. Analyses of the datasets obtained show that: (1) sand ripples can have irregular shapes, and (2) changes in bedform morphology are small within a single tidal cycle but may be significant over several tidal cycles. Fractal and variogram analyses of the seabed roughness revealed the existence of a significant relationship between current speed and the fractal dimension of the seabed roughness. As current speed increases, seabed roughness increases with a trend of smaller-scale bottom structures being replaced by larger-scale structures. Furthermore, the surface of the larger-scale bottom structures can either become smooth due to the absence of smaller-scale features or become rougher due to the presence of superimposed smaller-scale structures.展开更多
For anti-jamming and anti-countermeasure techniques of the sonar receiver, the response characteristics of the automatic gain control (AGC) circuit and the survivability of the prime circuit under strong interferenc...For anti-jamming and anti-countermeasure techniques of the sonar receiver, the response characteristics of the automatic gain control (AGC) circuit and the survivability of the prime circuit under strong interference are analyzed by simulations and experiments. An AGC simulation model based on the voltage control amplifier VCA810 prototype is proposed. Then static and dynamic simulations are realized with single frequency signal and linear frequency modulated (LFM) signal commonly used in the active sonar. Based on intense sound pulse (ISP) interference experiments, the real-time response characteristics of each module of the receiver are studied to verify the correctness of the model as well as the simulation results. Simulation and experiment results show that, under 252 dB/20 μs ISP interference, the specific sonar receiver will produce sustained cut top oscillation above 30 ms, which may affect the receiver and block the regular sonar signal.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFC3010803)the National Nature Science Foundation of China(Grant No.52272424)+1 种基金the Key R&D Program of Hubei Province of China(Grant No.2023BCB123)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2023IVB079)。
文摘Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.
基金This work is partially supported by the Natural Key Research and Development Program of China(No.2016YF C0301400).
文摘In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.
基金funded by the Natural Science Foundation of Fujian Province(No.2018J01063)the Project of Deep Learning Based Underwater Cultural Relics Recognization(No.38360041)the Project of the State Administration of Cultural Relics(No.2018300).
文摘Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.
文摘Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data.
文摘The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.
文摘This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.
基金Financially supported by the NSFC (Grant No.40276022), KnowledgeInnovation Program of Chinese Academy of Sciences (KZCX3-SW-219)and JSPS international cooperation program, and the Ministry of Scienceand Technology Project (G200046704)
文摘Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in turbidite and other debrite deposits. By high-resolution imaging, three sedimentary processes were distinguished with distinct acoustic features. 1. Slumps and slides occur with contrasting backscatter, rough surface textures, blockings, and acoustic shadows at headwalls. They are very extensive and often in lobate form downslope. 2. Debris flow has uniform, general medium backscatter, sometimes showing marbling/lineation in lobate form. 3. Turbidity current is characterized by low backscatter confined to the channel as acoustic signal is attenuated. Regional tectonics must be the dominating factor that controls deposition pattern in this area.
文摘Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.
基金supported by the National Natural Science Foundation of China(60572098)
文摘A new monostatic array system taking advantage of diverse waveforms to improve the performance of underwater tar- get localization is proposed. Unlike the coherent signals between different elements in common active array, the transmitted signals from different elements here are spatially orthogonal waveforms which allow for array processing in the transit mode and result in an extension of array aperture. The mathematical derivation of Capon estimator for this sonar system is described in detail. And the performance of this orthogonal-waveform based sonar is an- alyzed and compared with that of its phased-array counterpart by water tank experiments. Experimental results show that this sonar system could achieve 12 dB-15 dB additional array gain over its phased-array counterpart, which means a doubling of maximum detection range. Moreover, the angular resolution is significantly improved at lower SNR.
基金supported by the National Natural Science Foundation of China(11104222)the Doctorate Foundation of Northwestern Polytechnical University(CX201101)
文摘For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (60972152)the National Laboratory Foundation of China (9140C2304080607)+1 种基金the Aviation Science Fund (2009ZC53031)the Doctoral Foundation of Northwestern Polytechnical University (CX201002)
文摘The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.
基金Supported by Research Foundation of Shaanxi Province Returned Overseas Students No.SLZ2008006
文摘The performance of a sonar system is closely related to the marine environment and the target characteristics. When dealing with the echoes of a traditional active sonar system, the sonar designers often do not take into account the influence of the environmental information and prior knowledge perceived by sonar receivers, making it difficult to obtain desired processing results. Based on the basic principle and key technology of sonar, this paper proposed a cognition-based intelligent sonar system in theory--cognitive sonar. Cognitive sonar is capable of jointly optimizing the transmission waveform and receiver according to the changes of environment so that its detection and identification performance can be significantly improved.
文摘Sound pressure amplitude will be attenuated with propagation distance in a certain rule when sound wave is propagated in shallow sea.When processing the attenuated signal,time-variant gain circuit is usually used to compensate its diffusion loss.In this paper,spherical diffusion loss is compensated by digital potentiometer and operational circuit and further investigation is also made on compensation of cylindrical diffusion loss and transition from spherical diffusion loss to cylindrical diffusion loss.Finally,a new compensation model is proposed for unknown propagation loss for the purpose of adjusting the dynamic range of signal to meet the requirement of A/D conversion.
基金Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
文摘Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.
基金Sponsored by the National Natural Science Foundation of China(Grant No.41306086)the Technology Innovation Talent Special Foundation of Harbin(Grant No.2014RFQXJ105)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFR1121,HEUCF100606)
文摘According to the characteristics of sonar image data with manifold feature,the sonar image detection method based on two-phase manifold partner clustering algorithm is proposed. Firstly,K-means block clustering based on euclidean distance is proposed to reduce the data set. Mean value,standard deviation,and gray minimum value are considered as three features based on the relatinship between clustering model and data structure. Then K-means clustering algorithm based on manifold distance is utilized clustering again on the reduced data set to improve the detection efficiency. In K-means clustering algorithm based on manifold distance,line segment length on the manifold is analyzed,and a new power function line segment length is proposed to decrease the computational complexity. In order to quickly calculate the manifold distance,new allsource shortest path as the pretreatment of efficient algorithm is proposed. Based on this,the spatial feature of the image block is added in the three features to get the final precise partner clustering algorithm. The comparison with the other typical clustering algorithms demonstrates that the proposed algorithm gets good detection result. And it has better adaptability by experiments of the different real sonar images.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40876043,40976051 andJ1103408)Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105001-2)the Priority Academic Program Development of Jiangsu Higher Education Institutions fund
文摘The morphological characteristics of small-scale bedforms were measured by means of an acoustic profiling sonar on the Dafeng tidal flat, Jiangsu, in 2009, and in the Jiulong Estuary, Xiamen, in 2010, respectively. The "multi-threshold value" method was utilized to reveal the morphological undulations along which bedforms were present. Analyses of the datasets obtained show that: (1) sand ripples can have irregular shapes, and (2) changes in bedform morphology are small within a single tidal cycle but may be significant over several tidal cycles. Fractal and variogram analyses of the seabed roughness revealed the existence of a significant relationship between current speed and the fractal dimension of the seabed roughness. As current speed increases, seabed roughness increases with a trend of smaller-scale bottom structures being replaced by larger-scale structures. Furthermore, the surface of the larger-scale bottom structures can either become smooth due to the absence of smaller-scale features or become rougher due to the presence of superimposed smaller-scale structures.
基金supported by the National Natural Science Foundation of China (10974154)the National Innovation Project of China for Undergraduates (101069935)
文摘For anti-jamming and anti-countermeasure techniques of the sonar receiver, the response characteristics of the automatic gain control (AGC) circuit and the survivability of the prime circuit under strong interference are analyzed by simulations and experiments. An AGC simulation model based on the voltage control amplifier VCA810 prototype is proposed. Then static and dynamic simulations are realized with single frequency signal and linear frequency modulated (LFM) signal commonly used in the active sonar. Based on intense sound pulse (ISP) interference experiments, the real-time response characteristics of each module of the receiver are studied to verify the correctness of the model as well as the simulation results. Simulation and experiment results show that, under 252 dB/20 μs ISP interference, the specific sonar receiver will produce sustained cut top oscillation above 30 ms, which may affect the receiver and block the regular sonar signal.