The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composite...The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements.展开更多
The novel copper?complex with salicylaldehyde benzoylhydrazone and pyridine ligands, Cu(C14H10N2O2)(C5H5N), has been synthesized and characterized by elemental analysis, IR and thermal analysis. The crystal structure ...The novel copper?complex with salicylaldehyde benzoylhydrazone and pyridine ligands, Cu(C14H10N2O2)(C5H5N), has been synthesized and characterized by elemental analysis, IR and thermal analysis. The crystal structure of the title complex has been determined by single crystal X ray diffraction techniques. The crystal belongs to monoclinic with space group P21/c. The cell parameters are: a=1.6362(9)nm, b=1.7140(9)nm, c=1.2255(7)nm, β=105.168(9)°, V=3.317(3)nm3, Z=8, Dc=1.525g·cm-3, μ(MoKα)=1.334mm-1, F(000)=1560. The structure wasrefined to final R1=0.0376, wR2=0.0909. The copper?ion lies in a distorted square planar environment composed of two oxygen atoms, one nitrogen atom of tridentate acyhydrazone Schiff base ligand and one nitrogen atom of the pyridine ligand. CCDC: 193111.展开更多
基金supported by the Natural Science Foundation of Hunan Province(No.2023JJ50453)the Science Research Excellent Youth Project of Hunan Educational Department(No.22B0777)+1 种基金the Key Scientific Research Project of Hunan Educational Department(No.22A0551)the Key Scientific Research Projects of Huaihua University(No.HHUY2022-13).
文摘The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements.
文摘The novel copper?complex with salicylaldehyde benzoylhydrazone and pyridine ligands, Cu(C14H10N2O2)(C5H5N), has been synthesized and characterized by elemental analysis, IR and thermal analysis. The crystal structure of the title complex has been determined by single crystal X ray diffraction techniques. The crystal belongs to monoclinic with space group P21/c. The cell parameters are: a=1.6362(9)nm, b=1.7140(9)nm, c=1.2255(7)nm, β=105.168(9)°, V=3.317(3)nm3, Z=8, Dc=1.525g·cm-3, μ(MoKα)=1.334mm-1, F(000)=1560. The structure wasrefined to final R1=0.0376, wR2=0.0909. The copper?ion lies in a distorted square planar environment composed of two oxygen atoms, one nitrogen atom of tridentate acyhydrazone Schiff base ligand and one nitrogen atom of the pyridine ligand. CCDC: 193111.