期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进粒子群算法优化下的Lasso-Lssvm预测模型 被引量:15
1
作者 李翼 张本慧 郭宇燕 《统计与决策》 CSSCI 北大核心 2021年第13期45-49,共5页
文章首先针对最小二乘支持向量机(Lssvm)对高维输入特征较为敏感的问题,提出以Lasso算法筛选输入特征,建立Lasso-Lssvm预测模型,并通过粒子群算法对Lssvm中核函数的未知参数进行优化。然后,针对粒子群算法容易陷入局部最优和后期收敛较... 文章首先针对最小二乘支持向量机(Lssvm)对高维输入特征较为敏感的问题,提出以Lasso算法筛选输入特征,建立Lasso-Lssvm预测模型,并通过粒子群算法对Lssvm中核函数的未知参数进行优化。然后,针对粒子群算法容易陷入局部最优和后期收敛较慢等问题,提出了改进的粒子群算法(IPSO):基于网格划分方法,完成粒子初始化;在设定粒子速度更新的惯性权重时,基于Sigmod函数提出种群对比自适应动态惯性系数;针对粒子所处位置的优劣,动态变化学习因子。最后,基于1985—2018年能源排放相关数据建立改进的粒子群算法优化下的Lasso-Lssvm模型。结果表明,Lasso方法可以有效解决Lssvm对高维输入特征敏感的问题,所提出的粒子群算法有更好的寻优能力和鲁棒性,改进粒子群算法优化下的Lasso-Lssvm模型拥有更好的拟合效果和预测精度,验证了该方法的适用性和优越性。 展开更多
关键词 特征筛选 Lasso回归 IPSO算法 sigmod函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部