Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nige...Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nigerian cities has been on increase in recent times. The major problem faced by fire fighters in Nigerian urban centres is that there are no mechanisms to detect fire outbreaks early enough to save lives and properties. They often rely on calls made by neighbours or occupants when an outbreak occurs and this accounts for the delay in fighting fire outbreaks. This work uses Artificial Neural Networks (ANN) with backpropagation method to detect the occurrence of urban fires. The method uses smoke density, room temperature and cooking gas concentration as inputs. The work was implemented using Java programming language and results showed that it detected the occurrence of urban fires with reasonable accuracy. The work is recommended for use to minimize the effect of urban fire outbreak.展开更多
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (...This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method.展开更多
文摘Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nigerian cities has been on increase in recent times. The major problem faced by fire fighters in Nigerian urban centres is that there are no mechanisms to detect fire outbreaks early enough to save lives and properties. They often rely on calls made by neighbours or occupants when an outbreak occurs and this accounts for the delay in fighting fire outbreaks. This work uses Artificial Neural Networks (ANN) with backpropagation method to detect the occurrence of urban fires. The method uses smoke density, room temperature and cooking gas concentration as inputs. The work was implemented using Java programming language and results showed that it detected the occurrence of urban fires with reasonable accuracy. The work is recommended for use to minimize the effect of urban fire outbreak.
文摘This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method.