期刊文献+
共找到2,297篇文章
< 1 2 115 >
每页显示 20 50 100
The Analysis and Research on Design Features of the Modern Campus Sign System 被引量:3
1
作者 赵莹 安秀 《海外英语》 2011年第9X期397-398,共2页
With China's rapid development of the construction of modern campus,the school's increasing popularity and status as well as the growing number of foreign exchange.Current campus information,human development ... With China's rapid development of the construction of modern campus,the school's increasing popularity and status as well as the growing number of foreign exchange.Current campus information,human development has gradually become a new issue on the development and construction of schools.The article through the analyzing on design features of the modern Campus Sign System to meet the needs of different groups,and the information can be effective used through the modern Campus Sign System between peoples and campus.So that in their daily life,work and other needs are fully met. 展开更多
关键词 sign system FACILITY design ERGONOMICS
下载PDF
Intelligent Sign Multi-Language Real-Time Prediction System with Effective Data Preprocessing
2
作者 Doaa E. Elmatary Doaa M. Maher Areeg Tarek Ibrahim 《Journal of Computer and Communications》 2023年第10期120-134,共15页
A multidisciplinary approach for developing an intelligent sign multi-language recognition system to greatly enhance deaf-mute communication will be discussed and implemented. This involves designing a low-cost glove-... A multidisciplinary approach for developing an intelligent sign multi-language recognition system to greatly enhance deaf-mute communication will be discussed and implemented. This involves designing a low-cost glove-based sensing system, collecting large and diverse datasets, preprocessing the data, and using efficient machine learning models. Furthermore, the glove is integrated with a user-friendly mobile application called “Life-sign” for this system. The main goal of this work is to minimize the processing time of machine learning classifiers while maintaining higher accuracy performance. This is achieved by using effective preprocessing algorithms to handle noisy and inconsistent data. Testing and iterating approaches have been applied to various classifiers to refine and improve their accuracy in the recognition process. Additionally, the Extra Trees (ET) classifier has been identified as the best algorithm, with results proving successful gesture prediction at an average accuracy of about 99.54%. A smart optimization feature has been implemented to control the size of data transferred via Bluetooth, allowing for fast recognition of consecutive gestures. Real-time performance has been measured through extensive experimental testing on various consecutive gestures, specifically referring to Arabic Sign Language (ArSL). The results have demonstrated that the system guarantees consecutive gesture recognition with a lower delay of 50 milliseconds. 展开更多
关键词 Hand Gesture Translator sign Multi-Language Machine Learning Models Deaf-Mute Community
下载PDF
Source localization in signed networks with effective distance
3
作者 马志伟 孙蕾 +2 位作者 丁智国 黄宜真 胡兆龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期577-585,共9页
While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization ... While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage. 展开更多
关键词 complex networks signed networks source localization effective distance
下载PDF
Recent Advances on Deep Learning for Sign Language Recognition
4
作者 Yanqiong Zhang Xianwei Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2399-2450,共52页
Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automa... Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community. 展开更多
关键词 sign language recognition deep learning artificial intelligence computer vision gesture recognition
下载PDF
A Hybrid Feature Fusion Traffic Sign Detection Algorithm Based on YOLOv7
5
作者 Bingyi Ren Juwei Zhang Tong Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1425-1440,共16页
Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target size... Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced,and traffic sign targets are small and have unclear features,which makes detection more difficult.Therefore,we propose aHybrid Feature Fusion Traffic Sign detection algorithmbased onYOLOv7(HFFTYOLO).First,a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales;Secondly,the cross-scale fusion part of the neck introduces a bottom-up multi-path fusion method.Design reuse paths at the end of the neck,paying particular attention to cross-scale fusion of highlevel features.In addition,we found the appropriate channel width through a lot of experiments and reduced the superfluous parameters.In terms of training,a newregression lossCMPDIoUis proposed,which not only considers the problem of loss degradation when the aspect ratio is the same but the width and height are different,but also enables the penalty term to dynamically change at different scales.Finally,our proposed improved method shows excellent results on the TT100K dataset.Compared with the baseline model,without increasing the number of parameters and computational complexity,AP0.5 and AP increased by 2.2%and 2.7%,respectively,reaching 92.9%and 58.1%. 展开更多
关键词 Small target detection YOLOv7 traffic sign detection regression loss
下载PDF
Japanese Sign Language Recognition by Combining Joint Skeleton-Based Handcrafted and Pixel-Based Deep Learning Features with Machine Learning Classification
6
作者 Jungpil Shin Md.Al Mehedi Hasan +2 位作者 Abu Saleh Musa Miah Kota Suzuki Koki Hirooka 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2605-2625,共21页
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japane... Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for communication.However,existing JSL recognition systems have faced significant performance limitations due to inherent complexities.In response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning features.Our system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL gestures.Simultaneously,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second stream.Then,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL gestures.After reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the classification.To assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)dataset.Our results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods. 展开更多
关键词 Japanese sign Language(JSL) hand gesture recognition geometric feature distance feature angle feature GoogleNet
下载PDF
Enhancing Communication Accessibility:UrSL-CNN Approach to Urdu Sign Language Translation for Hearing-Impaired Individuals
7
作者 Khushal Das Fazeel Abid +4 位作者 Jawad Rasheed Kamlish Tunc Asuroglu Shtwai Alsubai Safeeullah Soomro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期689-711,共23页
Deaf people or people facing hearing issues can communicate using sign language(SL),a visual language.Many works based on rich source language have been proposed;however,the work using poor resource language is still ... Deaf people or people facing hearing issues can communicate using sign language(SL),a visual language.Many works based on rich source language have been proposed;however,the work using poor resource language is still lacking.Unlike other SLs,the visuals of the Urdu Language are different.This study presents a novel approach to translating Urdu sign language(UrSL)using the UrSL-CNN model,a convolutional neural network(CNN)architecture specifically designed for this purpose.Unlike existingworks that primarily focus on languageswith rich resources,this study addresses the challenge of translating a sign language with limited resources.We conducted experiments using two datasets containing 1500 and 78,000 images,employing a methodology comprising four modules:data collection,pre-processing,categorization,and prediction.To enhance prediction accuracy,each sign image was transformed into a greyscale image and underwent noise filtering.Comparative analysis with machine learning baseline methods(support vectormachine,GaussianNaive Bayes,randomforest,and k-nearest neighbors’algorithm)on the UrSL alphabets dataset demonstrated the superiority of UrSL-CNN,achieving an accuracy of 0.95.Additionally,our model exhibited superior performance in Precision,Recall,and F1-score evaluations.This work not only contributes to advancing sign language translation but also holds promise for improving communication accessibility for individuals with hearing impairments. 展开更多
关键词 Convolutional neural networks Pakistan sign language visual language
下载PDF
“Keyboard sign”and“coffee bean sign”in the prenatal diagnosis of ileal atresia:A case report
8
作者 Zhi-Hui Fei Qi-Yi Zhou +1 位作者 Ling Fan Chan Yin 《World Journal of Clinical Cases》 SCIE 2024年第24期5622-5627,共6页
BACKGROUND Ileal atresia is a congenital abnormality where there is significant stenosis or complete absence of a portion of the ileum.The overall diagnostic accuracy of prenatal ultrasound in detecting jejunal and il... BACKGROUND Ileal atresia is a congenital abnormality where there is significant stenosis or complete absence of a portion of the ileum.The overall diagnostic accuracy of prenatal ultrasound in detecting jejunal and ileal atresia is low.We report a case of ileal atresia diagnosed prenatally by ultrasound examination with the“keyboard sign”and“coffee bean sign”.CASE SUMMARY We report a case of ileal atresia diagnosed in utero at 31 weeks'of gestation.Prenatal ultrasound examination revealed two rows of intestines arranged in an‘S’shape in the middle abdomen.The inner diameters were 1.7 cm and 1.6 cm,respectively.A typical“keyboard sign”was observed.The intestine canal behind the“keyboard sign”showed an irregular strong echo.There was no normal intestinal wall structure,showing a typical“coffee bean sign”.Termination of the pregnancy and autopsy findings confirmed the diagnosis.CONCLUSION The prenatal diagnosis of ileal atresia is difficult.The sonographic features of the“keyboard sign”and“coffee bean sign”are helpful in diagnosing the location of congenital jejunal and ileal atresia. 展开更多
关键词 Ileal atresia The prenatal diagnosis Keyboard sign Coffee bean sign
下载PDF
A Survey on Chinese Sign Language Recognition:From Traditional Methods to Artificial Intelligence
9
作者 Xianwei Jiang Yanqiong Zhang +1 位作者 Juan Lei Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1-40,共40页
Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign La... Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing. 展开更多
关键词 Chinese sign Language Recognition deep neural networks artificial intelligence transfer learning hybrid network models
下载PDF
Traffic Sign Detection Model Based on Improved RT-DETR
10
作者 WANG Yong-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期97-106,178,共11页
The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due ... The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value. 展开更多
关键词 Object detection Traffic signs RT-DETR CAFMFusion
下载PDF
Correlation between abdominal computed tomography signs and postoperative prognosis for patients with colorectal cancer
11
作者 Shao-Min Yang Jie-Mei Liu +3 位作者 Rui-Ping Wen Yu-Dong Qian Jing-Bo He Jing-Song Sun 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第7期2145-2156,共12页
BACKGROUND Patients with different stages of colorectal cancer(CRC)exhibit different abdominal computed tomography(CT)signs.Therefore,the influence of CT signs on CRC prognosis must be determined.AIM To observe abdomi... BACKGROUND Patients with different stages of colorectal cancer(CRC)exhibit different abdominal computed tomography(CT)signs.Therefore,the influence of CT signs on CRC prognosis must be determined.AIM To observe abdominal CT signs in patients with CRC and analyze the correlation between the CT signs and postoperative prognosis.METHODS The clinical history and CT imaging results of 88 patients with CRC who underwent radical surgery at Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University were retrospectively analyzed.Univariate and multivariate Cox regression analyses were used to explore the independent risk factors for postoperative death in patients with CRC.The three-year survival rate was analyzed using the Kaplan-Meier curve,and the correlation between postoperative survival time and abdominal CT signs in patients with CRC was analyzed using Spearman correlation analysis.RESULTS For patients with CRC,the three-year survival rate was 73.86%.The death group exhibited more severe characteristics than the survival group.A multivariate Cox regression model analysis showed that body mass index(BMI),degree of periintestinal infiltration,tumor size,and lymph node CT value were independent factors influencing postoperative death(P<0.05 for all).Patients with characteristics typical to the death group had a low three-year survival rate(log-rankχ2=66.487,11.346,12.500,and 27.672,respectively,P<0.05 for all).The survival time of CRC patients was negatively correlated with BMI,degree of periintestinal infiltration,tumor size,lymph node CT value,mean tumor long-axis diameter,and mean tumor short-axis diameter(r=-0.559,0.679,-0.430,-0.585,-0.425,and-0.385,respectively,P<0.05 for all).BMI was positively correlated with the degree of periintestinal invasion,lymph node CT value,and mean tumor short-axis diameter(r=0.303,0.431,and 0.437,respectively,P<0.05 for all).CONCLUSION The degree of periintestinal infiltration,tumor size,and lymph node CT value are crucial for evaluating the prognosis of patients with CRC. 展开更多
关键词 Colorectal cancer ABDOMINAL Computed tomography signs Radical surgery PROGNOSIS CORRELATION
下载PDF
Selective his bundle pacing eliminates crochetage sign:A case report
12
作者 Yan-Guang Mu Ke-Sen Liu 《World Journal of Clinical Cases》 SCIE 2024年第22期5276-5282,共7页
BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of ... BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder. 展开更多
关键词 Crochetage sign Atrial septal defect PACEMAKER Selective his bundle pacing Case report
下载PDF
Multi-scale context-aware network for continuous sign language recognition
13
作者 Senhua XUE Liqing GAO +1 位作者 Liang WAN Wei FENG 《虚拟现实与智能硬件(中英文)》 EI 2024年第4期323-337,共15页
The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand an... The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach. 展开更多
关键词 Continuous sign language recognition Multi-scale motion attention Multi-scale temporal modeling
下载PDF
Effectiveness of aromatherapy with lavender compared to progressive muscle relaxation on anxiety and vital signs in patients under spinal anesthesia:A randomized clinical trial
14
作者 Nazanin AMINI Safoora OMIDVAR +2 位作者 Masoomeh Noruzi ZAMENJANI Mehdi HARORANI Hesameddin MODIR 《Journal of Integrative Nursing》 2024年第2期90-95,共6页
Objective:This study aimed to determine the effectiveness of aromatherapy with lavender essential oil compared to progressive muscle relaxation(PMR)on anxiety and vital signs of patients under spinal anesthesia.Materi... Objective:This study aimed to determine the effectiveness of aromatherapy with lavender essential oil compared to progressive muscle relaxation(PMR)on anxiety and vital signs of patients under spinal anesthesia.Materials and Methods:This clinical trial was conducted on 120 spinal anesthesia candidates who were randomly assigned into three groups of 40 including control,PMR(Jacobsen group),and aromatherapy.The state-trait anxiety inventory was completed on surgery day and 15 min after the end of the intervention by the samples of all three groups,and at the same time as completing the questionnaire,vital signs were also measured and recorded.Results:The mean score of anxiety after intervention was lower than that before the intervention in the aromatherapy group(P<0.001).The mean score of anxiety in the aromatherapy group was significantly lower than that in the Jacobsen group(P<0.001).Moreover,data analysis showed a significant decrease in the mean arterial blood pressure scores of the PMR(P=008)and aromatherapy(P<0.001)groups and a statistically significant increase in the mean heart rate scores in the control group(P=0.002).Conclusion:The use of aromatherapy with lavender is more effective than PMR therapy in reducing the anxiety level of patients undergoing spinal anesthesia.Due to the high level of anxiety and its serious effects on the patient’s hemodynamics,aromatherapy with lavender can be used as an easy and cheap method to reduce anxiety in operation rooms. 展开更多
关键词 ANXIETY AROMATHERAPY lavender essential oil MASSAGE progressive muscle relaxation spinal anesthesia vital signs
下载PDF
Functional Outcomes of Adult Tibia Shaft Fractures Treated with Solid Intramedullary Nails versus Hollow Nails: A Systematic Review
15
作者 Kwadwo Aning Abu Bernard Hammond +5 位作者 Mohammed Issah Suglo Bukari Kizito Kakra Vormawor Ronald Awoonor-Williams David Anyitey-Kokor Paa Kwesi Baidoo Dominic Konadu-Yeboah 《Open Journal of Orthopedics》 2024年第3期149-172,共24页
Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current rev... Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current review aims to compare the outcomes of adult tibia fractures treated with solid nails to those treated with hollow nails. Methods: A search on Scopus, PubMed, and Cochrane Library, using three keywords (Outcome, Tibia shaft fractures, Nail) was conducted in April 2023. Results were compiled and two independent reviewers screened and selected eligible articles After removing duplicates, titles and abstracts were read to exclude ineligible studies. Full-text articles of the remaining papers were read to select eligible studies which were further critically appraised to ascertain their methodological quality. The data extracted from the selected papers were synthesized using a combination of pooling of results, tests of statistical difference (t-test and chi-square) and narrative synthesis methods. Results: A total of 2295 articles were obtained from the databases and citation searching. A total of 9 papers were identified as eligible and included in the review. Findings revealed that there is no statistical difference in the outcomes of tibia fractures treated with either solid or hollow nail groups such as duration of surgery (p = 0.541), rate of delayed and non-union (p = 0.342), and rate of surgical site infections (p = 0.395). Conclusion: Intramedullary nailing of tibia shaft fractures with either solid or hollow nails have similar functional outcomes. 展开更多
关键词 Tibia Shaft Fractures Functional Outcome sign Nail Hollow Nail
下载PDF
Dynamics of a Quantum Dissipative System Coupled with an Oscillator
16
作者 Emmanouil George Thrapsaniotis 《Journal of Applied Mathematics and Physics》 2024年第4期1472-1491,共20页
We study the dynamics of a quantum dissipative system. Besides its linear coupling with a harmonic bath modelling the dissipation, we suppose that it is coupled with an oscillator with an interaction of the form s 2 x... We study the dynamics of a quantum dissipative system. Besides its linear coupling with a harmonic bath modelling the dissipation, we suppose that it is coupled with an oscillator with an interaction of the form s 2 x 2 . In our study, we integrate over the bath and the oscillator, extract the corresponding influence functionals and then solve the system’s sign problem. We apply the theory to the case of a double well and study the time evolution of the expectation value of the position. 展开更多
关键词 Double Well Harmonic Bath OSCILLATOR Influence Functional sign Solved Propagator POSITION
下载PDF
Research on Preschoolers’Comprehension of Safety Signs and Its Influencing Factors
17
作者 Na Qi Yuntao Li Jiehong Ding 《Journal of Contemporary Educational Research》 2024年第9期84-91,共8页
As an integral part of children’s safety education,safety signs hold significant importance for preschoolers’safety.This study aims to investigate the comprehension level of safety signs and its influencing factors ... As an integral part of children’s safety education,safety signs hold significant importance for preschoolers’safety.This study aims to investigate the comprehension level of safety signs and its influencing factors among preschoolers and explore the role of background factors such as safety education in children’s learning of safety signs.Sixty-seven preschoolers participated in the questionnaire investigation on 11 safety signs.The results were encoded by a binary method and subjected to descriptive analysis and multiple correspondence analysis.The results indicated that preschoolers can understand symbols,but there is a certain degree of arbitrariness.The existing thematic education fails to improve their understanding of safety signs.This study provides a theoretical basis for improving and optimizing child safety education. 展开更多
关键词 PRESCHOOLERS Safety signs Safety education
下载PDF
Sensor Configuration and Test for Fault Diagnoses of Subway Braking System Based on Signed Digraph Method 被引量:4
18
作者 ZUO Jianyong CHEN Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期475-482,共8页
Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a majo... Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a major challenge. Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers, which may lead to insufficient or redundant development of various sensors. In this paper, the optimization of sensor sets is addressed by using the signed digraph (SDG) method. The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods. Two criteria are adopted to evaluate the capability of the sensor sets, namely, observability and resolution. The sensors configuration method of braking system is proposed. It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm. To demonstrate the improvement, the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed. The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults, and with additional four brake cylinder pressure (BCP) sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system. SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults, such as the failure of a release valve. This study investigates the formal extension of the SDG method to the sensor configuration of braking system, as well as the adaptation supported by the effect-function method. 展开更多
关键词 fault diagnosis subway braking system signed directed graph sensor set optimization.
下载PDF
Adaptive Fuzzy Backstepping Output Feedback Control of Nonlinear Time-delay Systems with Unknown High-frequency Gain Sign 被引量:1
19
作者 Chang-Liang Liu Shao-Cheng Tong +1 位作者 Yong-Ming Li Yuan-Qing Xia 《International Journal of Automation and computing》 EI 2011年第1期14-22,共9页
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn... In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method. 展开更多
关键词 Nonlinear systems adaptive fuzzy control time-delay high-frequency gain sign BACKSTEPPING K-filters stability.
下载PDF
FPGA-Based Traffic Sign Recognition for Advanced Driver Assistance Systems 被引量:1
20
作者 Sheldon Waite Erdal Oruklu 《Journal of Transportation Technologies》 2013年第1期1-16,共16页
This paper presents the implementation of an embedded automotive system that detects and recognizes traffic signs within a video stream. In addition, it discusses the recent advances in driver assistance technologies ... This paper presents the implementation of an embedded automotive system that detects and recognizes traffic signs within a video stream. In addition, it discusses the recent advances in driver assistance technologies and highlights the safety motivations for smart in-car embedded systems. An algorithm is presented that processes RGB image data, extracts relevant pixels, filters the image, labels prospective traffic signs and evaluates them against template traffic sign images. A reconfigurable hardware system is described which uses the Virtex-5 Xilinx FPGA and hardware/software co-design tools in order to create an embedded processor and the necessary hardware IP peripherals. The implementation is shown to have robust performance results, both in terms of timing and accuracy. 展开更多
关键词 TRAFFIC sign Recognition Advanced DRIVER ASSISTANCE systems Field PROGRAMMABLE GATE Array (FPGA)
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部