期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
A Comparison of Classifiers in Performing Speaker Accent Recognition Using MFCCs
1
作者 Zichen Ma Ernest Fokoué 《Open Journal of Statistics》 2014年第4期258-266,共9页
An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC... An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC feature. For each signal, the mean vector of MFCC matrix is used as an input vector for pattern recognition. A sample of 330 signals, containing 165 US voice and 165 non-US voice, is analyzed. By comparison, k-nearest neighbors yield the highest average test accuracy, after using a cross-validation of size 500, and least time being used in the computation. 展开更多
关键词 SPEAKER ACCENT recognition mel-frequency Cepstral coefficients (mfccs) DISCRIMINANT Analysis Support Vector Machines (SVMs) k-Nearest NEIGHBORS
下载PDF
语音信号特征提取中Mel倒谱系MFCC的改进算法 被引量:29
2
作者 张震 王化清 《计算机工程与应用》 CSCD 北大核心 2008年第22期54-55,58,共3页
从说话人的语音信号中提取说话人的个性特征是声纹识别的关键。主要介绍语音信号特征提取方法中的Mel倒谱系数(Mel-Frequence Cepstral Coefficients,MFCC)的特点及其改进算法(3Q+1),分析给出了较详细的计算过程并通过实验比较了其和传... 从说话人的语音信号中提取说话人的个性特征是声纹识别的关键。主要介绍语音信号特征提取方法中的Mel倒谱系数(Mel-Frequence Cepstral Coefficients,MFCC)的特点及其改进算法(3Q+1),分析给出了较详细的计算过程并通过实验比较了其和传统算法在语音识别系统中的差别。 展开更多
关键词 语音识别 特征提取 mfcc
下载PDF
基于MFCC和GMM的瓷砖空鼓率识别系统及方法
3
作者 周浩 梁军汀 卢杰 《无损检测》 CAS 2024年第3期28-32,55,共6页
针对瓷砖因内部空鼓而引起的松动、脱落等质量问题或其他安全隐患问题,研制了一套用于瓷砖空鼓率识别的试验系统。该系统采用梅尔倒谱系数(MFCC)法提取瓷砖敲击声的特征参数,再用高斯混合模型(GMM)法对MFCC特征参数进行分类和识别。试... 针对瓷砖因内部空鼓而引起的松动、脱落等质量问题或其他安全隐患问题,研制了一套用于瓷砖空鼓率识别的试验系统。该系统采用梅尔倒谱系数(MFCC)法提取瓷砖敲击声的特征参数,再用高斯混合模型(GMM)法对MFCC特征参数进行分类和识别。试验结果表明,采用MFCC和GMM相结合的方法,可以对瓷砖空鼓情况进行有效识别,该方法具有良好的应用前景。 展开更多
关键词 声纹识别 梅尔倒谱系数 混合高斯模型
下载PDF
基于MFCC-IMFCC混合倒谱的托辊轴承故障诊断
4
作者 陶瀚宇 陈换过 +2 位作者 彭程程 高祥冲 杨磊 《机电工程》 CAS 北大核心 2024年第7期1215-1222,共8页
针对梅尔倒谱系数(MFCC)对托辊轴承高频特征提取能力不足的问题,提出了一种基于梅尔倒谱系数和翻转梅尔倒谱系数(MFCC-IMFCC)的混合倒谱以及长短时记忆(LSTM)网络的托辊轴承故障诊断方法。首先,分析了三种状态下的托辊声音信号,明确了... 针对梅尔倒谱系数(MFCC)对托辊轴承高频特征提取能力不足的问题,提出了一种基于梅尔倒谱系数和翻转梅尔倒谱系数(MFCC-IMFCC)的混合倒谱以及长短时记忆(LSTM)网络的托辊轴承故障诊断方法。首先,分析了三种状态下的托辊声音信号,明确了托辊轴承故障信息主要分布在中高频区域;然后,为有效保留高频信息,提取了MFCC-IMFCC,以帧级串联的方式组成了混合倒谱特征;最后,将混合倒谱特征输入到双层LSTM模型中进行了训练,建立了托辊轴承故障诊断模型。研究结果表明:针对托辊正常、滚动体故障和偏心旋转故障三种状态,LSTM结合混合倒谱特征的平均识别准确率达到96.72%,相比于单一的MFCC和IMFCC特征,准确率分别提升3.94%和7.41%,凸显了混合倒谱特征在表征托辊轴承故障信息方面的显著优势。 展开更多
关键词 托辊轴承 轴承故障声音信号 高频信息 梅尔倒谱系数 翻转梅尔倒谱系数 混合倒谱系数 长短时记忆网络
下载PDF
Extraction of novel features for emotion recognition
5
作者 李翔 郑宇 李昕 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期479-486,共8页
Hilbert-Huang transform method has been widely utilized from its inception because of the superiority in varieties of areas. The Hilbert spectrum thus obtained is able to reflect the distribution of the signal energy ... Hilbert-Huang transform method has been widely utilized from its inception because of the superiority in varieties of areas. The Hilbert spectrum thus obtained is able to reflect the distribution of the signal energy in a number of scales accurately. In this paper, a novel feature called ECC is proposed via feature extraction of the Hilbert energy spectrum which describes the distribution of the instantaneous energy. The experimental results conspicuously demonstrate that ECC outperforms the traditional short-term average energy. Combination of the ECC with mel frequency cepstral coefficients (MFCC) delineates the distribution of energy in the time domain and frequency domain, and the features of this group achieve a better recognition effect compared with the feature combination of the short-term average energy, pitch and MFCC. Afterwards, further improvements of ECC are developed. TECC is gained by combining ECC with the teager energy operator, and EFCC is obtained by introducing the instantaneous frequency to the energy. In the experiments, seven status of emotion are selected to be recognized and the highest recognition rate 83.57% is achieved within the classification accuracy of boredom reaching 100%. The numerical results indicate that the proposed features ECC, TECC and EFCC can improve the performance of speech emotion recognition substantially. 展开更多
关键词 emotion recognition mel frequency cepstral coefficients (mfcc feature extraction
下载PDF
基于改进MFCC算法的风力机叶片故障诊断方法 被引量:1
6
作者 张家安 田家辉 +2 位作者 王铁成 邓强 梁涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期285-290,共6页
针对传统声信号特征处理方法无法有效提取叶片声音特征、导致叶片故障诊断准确率低的问题,提出一种基于改进梅尔频率倒谱系数(MFCC)算法的风力机叶片故障诊断方法。首先采用快速傅里叶变换(FFT)分析不同风速下叶片声音信号和风噪的频率... 针对传统声信号特征处理方法无法有效提取叶片声音特征、导致叶片故障诊断准确率低的问题,提出一种基于改进梅尔频率倒谱系数(MFCC)算法的风力机叶片故障诊断方法。首先采用快速傅里叶变换(FFT)分析不同风速下叶片声音信号和风噪的频率特性,明确叶片声音信号的频率分布区域,将全频段分为三部分;然后采用粒子群优化算法(PSO)对梅尔(Mel)函数在不同频段上的敏感度进行优化,在迭代过程中将MFCC算法提取的叶片声音特征进行聚类,以轮廓系数作为适应度函数;最后基于支持向量机(SVM)构建分类器,实现风力机叶片故障的准确识别。以华北某风电场的叶片声音采集数据为算例,考察该算法在不同风速工况下的适应性,验证该方法的有效性。 展开更多
关键词 风力机叶片 声信号处理 故障诊断 特征提取 梅尔频率倒谱系数
下载PDF
Application of formant instantaneous characteristics to speech recognition and speaker identification
7
作者 侯丽敏 胡晓宁 谢娟敏 《Journal of Shanghai University(English Edition)》 CAS 2011年第2期123-127,共5页
This paper proposes a new phase feature derived from the formant instantaneous characteristics for speech recognition (SR) and speaker identification (SI) systems. Using Hilbert transform (HT), the formant chara... This paper proposes a new phase feature derived from the formant instantaneous characteristics for speech recognition (SR) and speaker identification (SI) systems. Using Hilbert transform (HT), the formant characteristics can be represented by instantaneous frequency (IF) and instantaneous bandwidth, namely formant instantaneous characteristics (FIC). In order to explore the importance of FIC both in SR and SI, this paper proposes different features from FIC used for SR and SI systems. When combing these new features with conventional parameters, higher identification rate can be achieved than that of using Mel-frequency cepstral coefficients (MFCC) parameters only. The experiment results show that the new features are effective characteristic parameters and can be treated as the compensation of conventional parameters for SR and SI. 展开更多
关键词 instantaneous frequency (IF) Hilbert transform (HT) speech recognition speaker identification mel-frequency cepstral coefficients (mfcc
下载PDF
基于MFCC与CNN的机械故障声音自动识别
8
作者 黄炜 罗谢飞 《电声技术》 2024年第6期129-131,共3页
针对机械故障自动识别问题,提出一种结合梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)与一维卷积神经网络(Convolutional Neural Networks,CNN)的机械故障声音自动识别方法,并通过实验验证该方法的有效性。实验结果表明... 针对机械故障自动识别问题,提出一种结合梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)与一维卷积神经网络(Convolutional Neural Networks,CNN)的机械故障声音自动识别方法,并通过实验验证该方法的有效性。实验结果表明,该方法在机械故障声音识别中具有较高的准确率、精确率及召回率,能够有效识别故障案例。 展开更多
关键词 机械故障 声音识别 梅尔频率倒谱系数(mfcc) 卷积神经网络(CNN)
下载PDF
基于MFCC和HMM的语音识别优化方法研究
9
作者 郭佳淇 张继通 《电声技术》 2024年第10期83-85,共3页
为探究基于梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)和隐马尔可夫模型(Hidden Markov Model,HMM)的语音识别优化方法,首先探讨语音识别系统的基本框架设计,其次分析MFCC特征提取方法,再次引入期望最大化(Expectatio... 为探究基于梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)和隐马尔可夫模型(Hidden Markov Model,HMM)的语音识别优化方法,首先探讨语音识别系统的基本框架设计,其次分析MFCC特征提取方法,再次引入期望最大化(Expectation Maximization,EM)算法优化HMM参数,最后利用THCHS-30数据集进行实验验证。结果表明,引入EM算法优化HMM,可有效克服传统HMM在复杂语音环境下的识别困难问题,显著提升系统的识别精度和健壮性。 展开更多
关键词 语音识别 梅尔频率倒谱系数(mfcc) 隐马尔可夫模型(HMM) 期望最大化(EM)
下载PDF
基于改进MFCC和VQ的变压器声纹识别模型 被引量:84
10
作者 王丰华 王邵菁 +2 位作者 陈颂 袁国刚 张君 《中国电机工程学报》 EI CSCD 北大核心 2017年第5期1535-1542,共8页
为准确地获取变压器的噪声特性,该文提出了一种基于改进梅尔频率倒谱系数和矢量量化算法的变压器声纹识别模型。首先对变压器噪声信号进行分帧和加窗处理,然后综合运用加权处理法和主成分分析法对现有的MFCC特征向量提取算法进行改进,... 为准确地获取变压器的噪声特性,该文提出了一种基于改进梅尔频率倒谱系数和矢量量化算法的变压器声纹识别模型。首先对变压器噪声信号进行分帧和加窗处理,然后综合运用加权处理法和主成分分析法对现有的MFCC特征向量提取算法进行改进,进而基于VQ算法对变压器噪声信号进行识别。以某10k V变压器为对象进行空载试验,对不同铁芯松动下的噪声信号进行测试。计算结果表明,改进后的MFCC特征向量提取算法具有识别效率高和计算速度快的特点,所得到的MFCC特征向量能准确反映不同铁芯压紧程度下的变压器噪声特征,且基于VQ算法的识别结果与预设铁芯工况吻合良好。研究结果可为变压器结构优化设计及噪声治理提供依据。 展开更多
关键词 变压器 梅尔频谱倒谱系数 声纹识别 矢量量化 主成分分析 噪声
下载PDF
一种基于MFCC和LPCC的文本相关说话人识别方法 被引量:14
11
作者 于明 袁玉倩 +1 位作者 董浩 王哲 《计算机应用》 CSCD 北大核心 2006年第4期883-885,共3页
在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。... 在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。通过与动态时间规整算法和传统的矢量量化方法进行比较表明,在系统响应时间并未明显增加的基础上,该模型识别率有一定提高。 展开更多
关键词 说话人识别 线性预测倒谱系数 美尔倒谱系数 矢量量化 动态时间规整
下载PDF
Mel频率下基于LPC的语音信号深度特征提取算法 被引量:12
12
作者 罗元 吴承军 +2 位作者 张毅 黎小松 席兵 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第2期174-179,共6页
针对传统语音信号二次特征提取方法在保证识别率的前提下,实时性较差的问题,提出一种Mel频率下基于线性预测系数(linear predictive coefficient,LPC)的改进的语音信号深度特征提取算法。该方法根据人耳的听觉特性把LPC在Mel频率下进行... 针对传统语音信号二次特征提取方法在保证识别率的前提下,实时性较差的问题,提出一种Mel频率下基于线性预测系数(linear predictive coefficient,LPC)的改进的语音信号深度特征提取算法。该方法根据人耳的听觉特性把LPC在Mel频率下进行非线性变换,再进行微分、高阶微分和按比例重组等步骤,得到一种既考虑声道激励又兼顾人耳听觉的新特征参数,从而大大减少传统语音信号深度特征提取的计算量,在不影响识别效率的情况下,极大提高系统的实时性。最后,将该算法在智能轮椅平台进行有效性验证,大量实验表明,语音控制系统实时性差的问题在使用该算法后能够得到明显改善,该算法既保证了特征提取识别率,也有效地改善了系统的实时性。在一定程度上使语音控制智能轮椅更具实用性。 展开更多
关键词 语音识别 线性预测系数 mel频率倒谱系数 mel-LPC算法 深度特征提取
下载PDF
一种适用于说话人识别的改进Mel滤波器 被引量:8
13
作者 项要杰 杨俊安 +1 位作者 李晋徽 陆俊 《计算机工程》 CAS CSCD 2013年第11期214-217,222,共5页
Mel倒谱系数(MFCC)侧重提取语音信号的低频信息,对语音信号的频谱分布特性描述不充分,不能有效区分说话人个性信息。为此,通过分析语音信号各频段所含说话人个性信息的不同,结合Mel滤波器和反Mel滤波器在高低频段的不同特性,提出一种适... Mel倒谱系数(MFCC)侧重提取语音信号的低频信息,对语音信号的频谱分布特性描述不充分,不能有效区分说话人个性信息。为此,通过分析语音信号各频段所含说话人个性信息的不同,结合Mel滤波器和反Mel滤波器在高低频段的不同特性,提出一种适于说话人识别的改进Mel滤波器。实验结果表明,改进Mel滤波器提取的新特征能够获得比传统Mel倒谱系数以及反Mel倒谱系数(IMFCC)更好的识别效果,并且基本不增加说话人识别系统训练和识别的时间开销。 展开更多
关键词 说话人识别 mel倒谱系数 个性信息 mel倒谱系数 频谱分布 语音信号
下载PDF
基于Mel倒谱系数和矢量量化的昆虫声音自动鉴别 被引量:10
14
作者 竺乐庆 王鸿斌 张真 《昆虫学报》 CAS CSCD 北大核心 2010年第8期901-907,共7页
为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫种类鉴别方法,本研究把人类语音识别领域的先进技术应用于昆虫识别,提出了一种新颖的昆虫声音自动鉴别方法,用声音参数化技术为昆虫声纹识别设计了一种简单易行的方案。声音... 为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫种类鉴别方法,本研究把人类语音识别领域的先进技术应用于昆虫识别,提出了一种新颖的昆虫声音自动鉴别方法,用声音参数化技术为昆虫声纹识别设计了一种简单易行的方案。声音信号经过预处理、分段得到一系列的声音样本,从声音样本提取Mel倒谱系数(MFCC),并用Linde-Buzo-Gray(LBG)算法对提取的MFCC进行矢量量化(VQ),所得码字作为声音样本的特征模型。特征参数之间的匹配用搜索最近邻的方法实现。本文方法在包含70种昆虫声音的库中进行了试验,取得了超过96%的识别率和理想的时间性能。试验结果证明了该方法的有效性。 展开更多
关键词 昆虫 声音识别 mel倒谱系数 LBG算法 矢量量化
下载PDF
差分和加权Mel倒谱混合参数应用于说话人识别 被引量:14
15
作者 柯晶晶 周萍 +1 位作者 景新幸 杨青 《微电子学与计算机》 CSCD 北大核心 2014年第9期88-91,共4页
说话人识别是信息技术和生物学的新一代身份验证方式,在说话人识别的研究中,特征参数的提取直接影响到识别系统最终的识别效率.通过对Mel频率倒谱系数特征参数进行分析研究,基于Mel频率倒谱系数改进加权函数,将体现个人语音特性的加权... 说话人识别是信息技术和生物学的新一代身份验证方式,在说话人识别的研究中,特征参数的提取直接影响到识别系统最终的识别效率.通过对Mel频率倒谱系数特征参数进行分析研究,基于Mel频率倒谱系数改进加权函数,将体现个人语音特性的加权特征参数与反映语音帧间变化的差分Mel频率倒谱系数进行维度筛选,再进行参数混合.实验结果表明,通过改进加权函数提取得到的特征参数与差分Mel频率倒谱系数的混合参数在矢量量化的说话人识别系统中,码本容量为16和32时可以达到100%的识别率. 展开更多
关键词 说话人识别 加权mel频率倒谱系数 混合参数 矢量量化
下载PDF
基于MFCC和GMM的昆虫声音自动识别 被引量:16
16
作者 竺乐庆 张真 《昆虫学报》 CAS CSCD 北大核心 2012年第4期466-471,共6页
昆虫的运动、取食、鸣叫都会发出声音,这些声音存在种内相似性和种间差异性,因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音... 昆虫的运动、取食、鸣叫都会发出声音,这些声音存在种内相似性和种间差异性,因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音参数化技术来实现昆虫的声音自动鉴别。声音样本经预处理后,提取梅尔倒谱系数(Mel-frequency cepstrum coefficient,MFCC)作为特征,并用这些样本提取的MFCC特征集训练混合高斯模型(Gaussian mixturemodel,GMM)。最后用训练所得到的GMM对未知类别的昆虫声音样本进行分类。该方法在包含58种昆虫声音的样本库中进行了评估,取得了较高的识别正确率(平均精度为98.95%)和较理想的时间性能。该测试结果证明了基于MFCC和GMM的语音参数化技术可以用来有效地识别昆虫种类。 展开更多
关键词 昆虫 种类鉴定 声音处理 自动识别 梅尔倒谱系数 混合高斯模型
下载PDF
基于Mel频率倒谱系数和遗传算法的煤矸界面识别研究 被引量:6
17
作者 何爱香 王平建 +1 位作者 魏广芬 张守祥 《工矿自动化》 北大核心 2013年第2期66-71,共6页
针对现有的煤矸界面识别技术采用的γ射线法不适用于顶板不含放射性元素或者放射性元素含量较低的工作面,而雷达探测法探测范围小、信号衰减严重的问题,提出了一种基于Mel频率倒谱系数和遗传算法的煤矸界面识别方法。该方法利用煤矸放... 针对现有的煤矸界面识别技术采用的γ射线法不适用于顶板不含放射性元素或者放射性元素含量较低的工作面,而雷达探测法探测范围小、信号衰减严重的问题,提出了一种基于Mel频率倒谱系数和遗传算法的煤矸界面识别方法。该方法利用煤矸放落过程中产生的声波信号的特征差异进行煤矸识别,采用Mel频率倒谱系数将去噪后的煤矸声波信号变换到频域进行处理,提取出煤矸声波信号的32维特征参数;采用遗传算法优化处理32维特征参数,得到最优参数组合;采用支持向量机和BP神经网络对最优参数进行识别。实验结果表明,该方法能够准确识别出煤矸下落状态。 展开更多
关键词 放顶煤开采 煤矸界面识别 mel频率倒谱系数 mfcc 遗传算法 支持向量机 BP神经网络
下载PDF
基于MFCC和短时能量混合的异常声音识别算法 被引量:29
18
作者 吕霄云 王宏霞 《计算机应用》 CSCD 北大核心 2010年第3期796-798,共3页
针对现行异常声音识别算法复杂度高和特征识别率低的问题,将梅尔频率倒谱系数(MFCC)与短时能量混合特征应用到异常声音识别系统中。该混合特征使得高斯混合模型(GMM)分类器可获得比使用MFCC特征及其差分MFCC更好的分类性能。给出了系统... 针对现行异常声音识别算法复杂度高和特征识别率低的问题,将梅尔频率倒谱系数(MFCC)与短时能量混合特征应用到异常声音识别系统中。该混合特征使得高斯混合模型(GMM)分类器可获得比使用MFCC特征及其差分MFCC更好的分类性能。给出了系统实现的具体步骤,并通过仿真实验证明了该算法的有效性,分类器的平均识别率可达到90%以上,并且计算复杂度小。 展开更多
关键词 异常声音识别 梅尔倒谱系数 短时能量 高斯混合模型
下载PDF
基于MFCC的语音情感识别 被引量:23
19
作者 韩一 王国胤 杨勇 《重庆邮电大学学报(自然科学版)》 2008年第5期597-602,共6页
情感语音中携带着丰富的信息,在人机交互领域有着广阔的应用。Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征,MFCC已经广泛地应用在语音识别... 情感语音中携带着丰富的信息,在人机交互领域有着广阔的应用。Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征,MFCC已经广泛地应用在语音识别领域。由于Mel频率与Hz频率之间非线性的对应关系,使得MFCC随着频率的提高,其计算精度随之下降。因此,在应用中常常只使用低频MFCC,而丢弃中高频MFCC。针对该问题进行了研究,修正了Hz-Mel非线性对应关系,提升了中高频系数的计算精度,并将其作为低频MFCC的补充,应用到语音情感识别中。实验证明,改进之后的算法与经典算法比较,在不同的特征组合上识别率都有不同程度的提高,从而证明了Mid MFCC特征计算方法的有效性。 展开更多
关键词 mfcc 语音情感识别 情感计算
下载PDF
融合LPC与MFCC的特征参数 被引量:8
20
作者 张学锋 王芳 夏萍 《计算机工程》 CAS CSCD 北大核心 2011年第4期216-217,229,共3页
在线性预测系数(LPC)的基础上,借鉴美尔倒谱系数(MFCC)计算方法,对LPC进行美尔倒谱计算,得到一种新的特征参数:线性预测美尔倒谱系数(LPMFCC)。在Matlab7.0平台上实现一个基于隐马尔可夫模型(HMM)的说话人识别系统,分别用LPMFCC及其一... 在线性预测系数(LPC)的基础上,借鉴美尔倒谱系数(MFCC)计算方法,对LPC进行美尔倒谱计算,得到一种新的特征参数:线性预测美尔倒谱系数(LPMFCC)。在Matlab7.0平台上实现一个基于隐马尔可夫模型(HMM)的说话人识别系统,分别用LPMFCC及其一阶差分、MFCC及其一阶差分和基于小波包分析的特征参数(WPDC)及其一阶差分作为识别参数进行对比实验。结果表明,以LPMFCC作为特征参数的系统具有较高的识别率。 展开更多
关键词 线性预测 美尔倒谱系数 说话人识别
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部