An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC...An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC feature. For each signal, the mean vector of MFCC matrix is used as an input vector for pattern recognition. A sample of 330 signals, containing 165 US voice and 165 non-US voice, is analyzed. By comparison, k-nearest neighbors yield the highest average test accuracy, after using a cross-validation of size 500, and least time being used in the computation.展开更多
Hilbert-Huang transform method has been widely utilized from its inception because of the superiority in varieties of areas. The Hilbert spectrum thus obtained is able to reflect the distribution of the signal energy ...Hilbert-Huang transform method has been widely utilized from its inception because of the superiority in varieties of areas. The Hilbert spectrum thus obtained is able to reflect the distribution of the signal energy in a number of scales accurately. In this paper, a novel feature called ECC is proposed via feature extraction of the Hilbert energy spectrum which describes the distribution of the instantaneous energy. The experimental results conspicuously demonstrate that ECC outperforms the traditional short-term average energy. Combination of the ECC with mel frequency cepstral coefficients (MFCC) delineates the distribution of energy in the time domain and frequency domain, and the features of this group achieve a better recognition effect compared with the feature combination of the short-term average energy, pitch and MFCC. Afterwards, further improvements of ECC are developed. TECC is gained by combining ECC with the teager energy operator, and EFCC is obtained by introducing the instantaneous frequency to the energy. In the experiments, seven status of emotion are selected to be recognized and the highest recognition rate 83.57% is achieved within the classification accuracy of boredom reaching 100%. The numerical results indicate that the proposed features ECC, TECC and EFCC can improve the performance of speech emotion recognition substantially.展开更多
This paper proposes a new phase feature derived from the formant instantaneous characteristics for speech recognition (SR) and speaker identification (SI) systems. Using Hilbert transform (HT), the formant chara...This paper proposes a new phase feature derived from the formant instantaneous characteristics for speech recognition (SR) and speaker identification (SI) systems. Using Hilbert transform (HT), the formant characteristics can be represented by instantaneous frequency (IF) and instantaneous bandwidth, namely formant instantaneous characteristics (FIC). In order to explore the importance of FIC both in SR and SI, this paper proposes different features from FIC used for SR and SI systems. When combing these new features with conventional parameters, higher identification rate can be achieved than that of using Mel-frequency cepstral coefficients (MFCC) parameters only. The experiment results show that the new features are effective characteristic parameters and can be treated as the compensation of conventional parameters for SR and SI.展开更多
文摘An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC feature. For each signal, the mean vector of MFCC matrix is used as an input vector for pattern recognition. A sample of 330 signals, containing 165 US voice and 165 non-US voice, is analyzed. By comparison, k-nearest neighbors yield the highest average test accuracy, after using a cross-validation of size 500, and least time being used in the computation.
基金Project supported by the State Key Laboratory of Robotics and System(Grant No.SKLS-2009-MS-10)the Shanghai Leading Academic Discipline Project(Grant No.J50103)
文摘Hilbert-Huang transform method has been widely utilized from its inception because of the superiority in varieties of areas. The Hilbert spectrum thus obtained is able to reflect the distribution of the signal energy in a number of scales accurately. In this paper, a novel feature called ECC is proposed via feature extraction of the Hilbert energy spectrum which describes the distribution of the instantaneous energy. The experimental results conspicuously demonstrate that ECC outperforms the traditional short-term average energy. Combination of the ECC with mel frequency cepstral coefficients (MFCC) delineates the distribution of energy in the time domain and frequency domain, and the features of this group achieve a better recognition effect compared with the feature combination of the short-term average energy, pitch and MFCC. Afterwards, further improvements of ECC are developed. TECC is gained by combining ECC with the teager energy operator, and EFCC is obtained by introducing the instantaneous frequency to the energy. In the experiments, seven status of emotion are selected to be recognized and the highest recognition rate 83.57% is achieved within the classification accuracy of boredom reaching 100%. The numerical results indicate that the proposed features ECC, TECC and EFCC can improve the performance of speech emotion recognition substantially.
基金Project supported by the National Natural Science Foundation of China (Grant No.60903186)the Shanghai Leading Academic Discipline Project (Grant No.J50104)
文摘This paper proposes a new phase feature derived from the formant instantaneous characteristics for speech recognition (SR) and speaker identification (SI) systems. Using Hilbert transform (HT), the formant characteristics can be represented by instantaneous frequency (IF) and instantaneous bandwidth, namely formant instantaneous characteristics (FIC). In order to explore the importance of FIC both in SR and SI, this paper proposes different features from FIC used for SR and SI systems. When combing these new features with conventional parameters, higher identification rate can be achieved than that of using Mel-frequency cepstral coefficients (MFCC) parameters only. The experiment results show that the new features are effective characteristic parameters and can be treated as the compensation of conventional parameters for SR and SI.