期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Trends and frontiers in signal amplification for aptamer-based tumor detection:A bibliometric analysis
1
作者 Dan Cai Gui-Lin Chen +1 位作者 Ting Wang Kun-He Zhang 《World Journal of Clinical Cases》 SCIE 2024年第21期4726-4741,共16页
BACKGROUND Malignant tumors are one of the leading causes of death worldwide,imposing a substantial economic and social burden.Early detection is the key to improving cure rates and reducing mortality rates,which requ... BACKGROUND Malignant tumors are one of the leading causes of death worldwide,imposing a substantial economic and social burden.Early detection is the key to improving cure rates and reducing mortality rates,which requires the development of sensitive early detection technologies.Signal amplification techniques play a crucial role in aptamer-based early detection of tumors and are increasingly garnering attention from researchers.AIM To investigate the current research status,developmental trajectories,and hotspots in signal amplification for aptamer-based tumor detection through bibliometric analysis.METHODS English publications pertaining to signal amplification in aptamer-based tumor detection were retrieved from the Web of Science Core Collection database.VOSviewer and CiteSpace software were employed to analyze various information within this field,including countries,institutions,authors,co-cited authors,journals,co-cited journals,cited references,and keywords.RESULTS A total of 757 publications were included in this study.China accounted for 85.47%of all publications,with Nanjing University(China)emerging as the institution with the highest publication output.The most influential authors and journals were Hasanzadeh M.from Iran and"Biosensors and Bioelectronics",respectively.Exosomes and carcinoembryonic antigen(CEA)stood out as the most researched tumor-related molecules.Currently,the predominant signal amplification technique,nanomaterial,and signal transduction method were identified as hybridization chain reactions,gold nanoparticles,and electrochemical methods,respectively.Over the past 3 years,exosomes,CEA,electrochemical biosensors,and nanosheets have emerged as research hotspots,exhibiting a robust burst of intensity.CONCLUSION This study is the first bibliometric analysis of literature on signal amplification in aptamer-based tumor detection and elucidates the current status,hotspots,and prospective research directions within this realm.Additionally,it provides an important reference for researchers. 展开更多
关键词 APTAMER signal amplification Tumor BIBLIOMETRICS ELECTROCHEMISTRY NANOSHEET
下载PDF
Current trends in nanomaterials-mediated biosensing platforms and signal amplification strategies for antibiotics detection in dairy products
2
作者 Cui-Yun Zhou Feng Jiang Chen-Xi Huang 《Food and Health》 2024年第1期28-42,共15页
Dairy products have become one of the most prevalent daily foods worldwide,but safety concerns are rising.In dairy farming,unscrupulous traders misuse antibiotics to treat some diseases such as mastitis in cows,leadin... Dairy products have become one of the most prevalent daily foods worldwide,but safety concerns are rising.In dairy farming,unscrupulous traders misuse antibiotics to treat some diseases such as mastitis in cows,leading to antibiotic residues in dairy products.Rapid,sensitive,and simple detection methods for antibiotic residues are particularly important for food safety in dairy products.Traditional detection technology can effectively detect antibiotics,but there are defects such as complicated pre-treatment and high cost.Biosensors are widely used in food safety due to fast detection speed,low detection cost,strong anti-interference ability,and suitability for the field application.Nevertheless,these sensors often fail to trigger the signal conversion output due to low target concentration.To cope with this issue,some high-efficiency signal amplification systems can be introduced to improve the detection sensitivity and linear range of biosensors.In this review,we focused on:(i)Sources and toxicity of major antibiotics in animal-derived foods.(ii)Nanomaterial-mediated biosensors for real-time detection of target antibiotics in animal-derived foods.(iii)Signal amplification techniques to increase the sensitivity of biosensors.Finally,future prospects and challenges in this research field are discussed. 展开更多
关键词 Nanosensors signal amplification Antibiotics detection Animal-derived foods.
下载PDF
Chromosomal Localization of Genes bz1,bz2 in Maize by Using Ultra-sensitive FISH with Tyramide Signal Amplification(TSA-FISH) 被引量:1
3
作者 李宗芸 宁顺斌 +2 位作者 韩永华 刘立华 宋运淳 《Developmental and Reproductive Biology》 2002年第1期1-7,共7页
It has been reported that endosperm undergoes programmed cell death (PCD) during maize kernel development.Both bz1 (bronze ) and bz2 are anthocyanin biosynthetic genes,and related to development of aleuronic la... It has been reported that endosperm undergoes programmed cell death (PCD) during maize kernel development.Both bz1 (bronze ) and bz2 are anthocyanin biosynthetic genes,and related to development of aleuronic layer of maize seeds.Tyramide signal amplification fluorescence in situ hybridization (TSA FISH) is a novel and high sensitive FISH technique,which is suitable for routine application in plant cytogenetic research.Using this technique,we physically mapped the bz1 gene onto the short arm of chromosome 9 and the long arm of chromosome 1;the percentage distances from centromere to hybridization site were 40.2,75.4 respectively,and the bz2 onto the long arm of chromosome 1 and the short arm of chromosome 5;the percentage distances from centromere to hybridization site were 21.6,15.3 separately.The TSA FISH techniques of small low copy DNA sequences for plants are discussed. 展开更多
关键词 programmed cell death (PCD) bronze genes tyramide signal amplification fluorescence in situ hybridization (TSA FISH) MAIZE
下载PDF
Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets:Recent progress and challenges in food safety hazards analysis 被引量:1
4
作者 Feng He Haijie Wang +7 位作者 Pengfei Du Tengfei Li Weiting Wang Tianyu Tan Yaobo Liu Yanli Ma Yuanshang Wang A.M.Abd El-Aty 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第3期223-238,共16页
Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix ... Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis. 展开更多
关键词 Food safety Personal glucose meter signal amplification Point-of-care testing Detection principle
下载PDF
Sensitive detection of microRNAs using polyadenine-mediated fluorescent spherical nucleic acids and a microfluidic electrokinetic signal amplification chip
5
作者 Jun Xu Qing Tang +8 位作者 Runhui Zhang Haoyi Chen Bee Luan Khoo Xinguo Zhang Yue Chen Hong Yan Jincheng Li Huaze Shao Lihong Liu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第5期808-813,共6页
The identification of tumor-related microRNAs(miRNAs)exhibits excellent promise for the early diagnosis of cancer and other bioanalytical applications.Therefore,we developed a sensitive and efficient biosensor using p... The identification of tumor-related microRNAs(miRNAs)exhibits excellent promise for the early diagnosis of cancer and other bioanalytical applications.Therefore,we developed a sensitive and efficient biosensor using polyadenine(polyA)-mediated fluorescent spherical nucleic acid(FSNA)for miRNA analysis based on strand displacement reactions on gold nanoparticle(AuNP)surfaces and electrokinetic signal amplification(ESA)on a microfluidic chip.In this FSNA,polyA-DNA biosensor was anchored on AuNP surfaces via intrinsic affinity between adenine and Au.The upright conformational polyA-DNA recognition block hybridized with 6-carboxyfluorescein-labeled reporter-DNA,resulting in fluorescence quenching of FSNA probes induced by AuNP-based resonance energy transfer.Reporter DNA was replaced in the presence of target miRNA,leading to the recovery of reporter-DNA fluorescence.Subsequently,reporter-DNAs were accumulated and detected in the front of with Nafion membrane in the microchannel by ESA.Our method showed high selectivity and sensitivity with a limit of detection of 1.3 pM.This method could also be used to detect miRNA-21 in human serum and urine samples,with recoveries of 104.0%-113.3% and 104.9%-108.0%,respectively.Furthermore,we constructed a chip with three parallel channels for the simultaneous detection of multiple tumor-related miRNAs(miRNA-21,miRNA-141,and miRNA-375),which increased the detection efficiency.Our universal method can be applied to other DNA/RNA analyses by altering recognition sequences. 展开更多
关键词 MICRORNAS Microfluidic chip Electrokinetic signal amplification Polyadenine-DNA Gold nanoparticle
下载PDF
Influence of coupling asymmetry on signal amplification in a three-node motif
6
作者 梁晓明 方超 +1 位作者 张希昀 吕华平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期239-243,共5页
The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node).... The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node). Here, we change the motif's unidirectional couplings(feedforward) to bidirectional couplings(feedforward and feedback working together).We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings. 展开更多
关键词 network motif SYNCHRONIZATION coupling asymmetry signal amplification
下载PDF
The application of branched DNA signal amplification in the detection of HBV-DNA (adr)
7
《中国输血杂志》 CAS CSCD 2001年第S1期405-,共1页
关键词 HBV The application of branched DNA signal amplification in the detection of HBV-DNA ADR
下载PDF
A High-Performance Electrochemical Analysis Platform for Ultrasensitive Detection of HTLV-1 DNA:Integrating Cascade Signal Amplification withλ-Exonuclease-Assisted Target Recycling and Enzyme Catalysis
8
作者 Qi Xiao Shuai Liu +5 位作者 Yali Wang Huihao Li Mingli Yang Yi Fang Sijing Chen Shan Huang 《Journal of Analysis and Testing》 EI 2024年第3期361-373,共13页
Human T-cell lymphophilic virus type 1(HTLV-1),the known retrovirus causing cancer in humans,is closely associated with adult T-cell leukemia/lymphoma and HTLV-1 associated myelopathy/tropical spastic paraparesis.Due ... Human T-cell lymphophilic virus type 1(HTLV-1),the known retrovirus causing cancer in humans,is closely associated with adult T-cell leukemia/lymphoma and HTLV-1 associated myelopathy/tropical spastic paraparesis.Due to its ability to evade the host's defense mechanisms,early tracking of HTLV-1 becomes crucial.In this study,we integrateλ-Exonuclease(λ-Exo)-assisted target recycling with a terminal deoxynucleotidyl transferase(TdT)-mediated template-free DNA extension process to develop an electrochemical analysis platform for the specific and sensitive detection of HTLV-1 DNA.During theλ-Exo-assisted target recycling,HTLV-1 DNA is recognized by hairpin DNA(Hp-DNA),forming double-stranded DNA(dsDNA)through DNA hybridization.The dsDNA,featuring blunt 5'terminal phosphorylation,is cleaved byλ-Exo,generating abundant short output sequence(sDNA).HTLV-1 DNA is released,initiating a cyclic hybridization-cleavage process.Subsequently,thiol-labelled capture DNA(CP-DNA)assembled on gold electrode surface captures a substantial amount of the generated sDNA,forming CP-DNA-sDNA nanostructures.When TdT and dNTPs are present on the electrode surface,the 3'-OH terminal of sDNA extends to generate long single-stranded DNA(ssDNA)structure.Methylene blue(MB)is selected as the electrochemical signal molecule.MB not only binds with ssDNA but also interacts specifically with dsDNA,resulting in a significantly enhanced electrochemical signal on modified electrode surface.The detection limit of HTLV-1 DNA is as low as 19 amol/L(S/N=3)when the two signal amplification strategies are combined.The analysis platform exhibits excellent analytical performance and holds promise as a novel tool for the early tracing and diagnosis of HTLV-1 DNA. 展开更多
关键词 HTLV-1 DNA Enzyme-assisted target recycling Cascade signal amplification Electrochemical DNA sensor
原文传递
Current signal amplification strategies in aptamer-based electrochemical biosensor:A review 被引量:4
9
作者 Lei He Rongrong Huang +8 位作者 Pengfeng Xiao Yuan Liu Lian Jin Hongna Liu Song Li Yan Deng Zhu Chen Zhiyang Li Nongyue He 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第5期1593-1602,共10页
Due to their high specificity and affinity towards various targets,along with other unique advantages such as stability and low cost,aptamers are widely applied in analytical techniques.A typical aptamerbased electroc... Due to their high specificity and affinity towards various targets,along with other unique advantages such as stability and low cost,aptamers are widely applied in analytical techniques.A typical aptamerbased electrochemical biosensor is composed of a aptamer as the biological recognition element and transducer converting the biologic interaction into electrical signals for the quantitative measurement of targets.Improvement of the sensitivity of a biosensor is significantly important in order to achieve the detection of biomolecules with low abundance,and different amplification strategies have been explored.The strategies either employ nanomaterials such as gold nanoparticles to con struct electrodes which can transfer the biological reactions more efficiently,or attempt to obtain enhanced signal through multi-labeled carriers or utilize enzyme mimics to catalyze redox cycling.This review discusses recent advances in signal amplification methods and their applications.Critical assessment of each method is also considered. 展开更多
关键词 ELECTROCHEMICAL APTASENSOR signal amplification NANOMATERIALS DNA nanotechnology
原文传递
DNA Technology-assisted Signal Amplification Strategies in Electrochemiluminescence Bioanalysis 被引量:4
10
作者 Yue Cao Cheng Ma Jun-Jie Zhu 《Journal of Analysis and Testing》 EI 2021年第2期95-111,共17页
Sensitive and accurate detection of biological analytes,such as proteins,genes,small molecules,ions,cells,etc.,has been a significant project in life science.Signal amplification is one of the most effective approache... Sensitive and accurate detection of biological analytes,such as proteins,genes,small molecules,ions,cells,etc.,has been a significant project in life science.Signal amplification is one of the most effective approaches to improve the sensitivity of bioanalysis.Taking advantage of specific base pairing,programmable operation,and predictable assembly,DNA is flexible and suitable to perform the signal amplification procedure.In recent years,signal amplification strategies by means of DNA technology have been widely integrated into the construction of electrochemiluminescence(ECL)biosensors,achieving desirable analytical performance in clinical diagnosis,biomedical research,and drug development.To the best of our knowledge,these DNA signal amplification technologies mainly include classical polymerase chain reaction,and various amplification approaches conducted under mild conditions,such as rolling circle amplification(RCA)or hyperbranched RCA,cleaving enzyme-assisted amplification,DNAzyme-involved amplification,toehold-mediated DNA strand displacement amplification without enzyme participation,and so on.This review overviews the recent advancements of DNA signal amplification strategies for bioanalysis in the ECL realm,sketching the creative trajectory from strategies design to ultrasensitive ECL platform construction and resulting applications. 展开更多
关键词 ELECTROCHEMILUMINESCENCE DNA technology signal amplification strategies BIOANALYSIS
原文传递
Electrochemical analysis of microRNAs with hybridization chain reaction-based triple signal amplification 被引量:1
11
作者 Jianfeng Ma Lingbo Gong +7 位作者 Yingying Cen Lin Feng Yan Su Xingfen Liu Jie Chao Ying Wan Shao Su Lianhui Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期210-213,共4页
Selective and sensitive detection of trace microRNA is important for early diagnosis of diseases due to its expression level related to diseases.Herein,a triple signal amplification strategy is developed for trace mic... Selective and sensitive detection of trace microRNA is important for early diagnosis of diseases due to its expression level related to diseases.Herein,a triple signal amplification strategy is developed for trace microRNA-21 (miRNA-21) detection by combining with target-triggered cyclic strand displacement reaction (TCSDR),hybridization chain reaction (HCR) and enzyme catalytic amplification.Four DNA hairpins(H1,H2,H3,H4) are employed to form an ultralong double-strand DNA (dsDNA) structure,which is initiated by target miRNA-21.As H3 and H4 are labeled with horseradish peroxidase (HRP),numerous HRPs are loaded on the long dsDNA,producing significantly enhanced electrocatalytic signals in the hydrogen peroxide (H_(2)O_(2)) and 3,3,5,5-tetramethylbenzidine (TMB) reaction strategy.Compared with single signal amplification,the triple signal amplification strategy shows higher electrochemical response,wider dynamic range and lower detection limit for miRNA-21 detection with excellent selectivity,reproducibility and stability.Taking advantage of the triple signal amplification strategy,the proposed electrochemical biosensor can detect miRNA-21 in 10 He La cell lysates,suggesting that it is a promising method for fruitful assay in clinical diagnosis. 展开更多
关键词 Electrochemical BIOSENSOR MICRORNAS Hybridization chain reaction Target-triggered cyclic strand displacement REACTION Triple signal amplification
原文传递
Enrichment and analysis of circulating tumor cells by integrating multivalent membrane nano-interface and endogenous enzyme-signal amplification
12
作者 Mengjiao Wang Dayong Li +5 位作者 Chengjie Duan Jin Jiao Youjing Gong Xiaoping Wang Zhongyun Wang Yang Xiang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期574-577,共4页
For circulating tumor cells(CTCs)-based cancer diagnosis and monitoring,effective enrichment and specific analysis of CTCs present significant challenges.The biomembrane interfaces can enhance the highaffinity interac... For circulating tumor cells(CTCs)-based cancer diagnosis and monitoring,effective enrichment and specific analysis of CTCs present significant challenges.The biomembrane interfaces can enhance the highaffinity interactions between various receptors and ligands in life activities by mediating the rearrangement and positioning of membrane-bound components through its fluidity.Inspired by this,we have constructed a multivalent membrane nano-interface using aptamer-linked liposomes for the efficient capture of CTCs.Furthermore,the subsequent introduction of rolling circle amplification(RCA)reaction has increased the number of aptamers and extended them to the surrounding space to improve the affinity of the membrane nano-interface for CTCs.After CTCs are enriched,alkaline phosphatase overexpressed on the surface of tumor cells is used as endogenous enzyme-mediated signal amplification by catalyzing 4-nitrophenyl phosphate(p NPP)with color change,achieving the analysis of CTCs.Finally,the enrichment and visual analysis of human hepatocellular carcinoma(HepG2)with a detection limit of 10 cells/m L can be obtained by integrating the multivalent membrane nano-interface and endogenous enzyme signal amplification.The detection of the target in the serum proved this method has the potential for further clinical application and provides a potential method for studying the correlation between alkaline phosphatase dimer and cancer progression. 展开更多
关键词 CTCS Nano-interface Alkaline phosphatase dimer signal amplification Liposomes
原文传递
In situ fluorescence imaging of fungi via(1,3)-β-D-glucan aptamer and tyramide signal amplification technology
13
作者 Pengfei Zuo Feng Gong +2 位作者 Yixia Yang Xinghu Ji Zhike He 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期560-563,共4页
Fungal infections are hazardous to human health that has drawn wide attention.In this work,a specific and sensitive method combing the recognition of aptamer to(1,3)-β-D-glucan and tyramide signal amplification techn... Fungal infections are hazardous to human health that has drawn wide attention.In this work,a specific and sensitive method combing the recognition of aptamer to(1,3)-β-D-glucan and tyramide signal amplification technology was proposed for the in situ fluorescence imaging of fungi.Fungi could be distinctly observed by fluorescence microscope rapidly.This method provides morphology and diagnostic information for identifying fungi.The combination of aptamer and tyramide signal amplification technology is a promising tool for the detection of fungi,bacteria and even eukaryotic cell with the virtue of biomarkers. 展开更多
关键词 FUNGI (1 3)-β-D-glucan APTAMER Tyramide signal amplification Fluorescence imaging
原文传递
Optical Switching and Digital Signal Amplification Using an Optical Fiber Grating OBD
14
作者 Song Qian Zhang Yuancheng 《Wuhan University Journal of Natural Sciences》 CAS 1997年第4期45-48,共4页
It is proposed that an optical fiber grating bistability device may be used for an all optical switching or an all optical digital signal amplifier with low power and high speed. The principle, characteristic and pa... It is proposed that an optical fiber grating bistability device may be used for an all optical switching or an all optical digital signal amplifier with low power and high speed. The principle, characteristic and paremeter are analysed, and some design ideas are given. 展开更多
关键词 optical bistability optical switching optical signal amplification fiber grating
下载PDF
Sensitive detection of thyroid stimulating hormone by inkjet printed microchip with a double signal amplification strategy
15
作者 Beibei Yang Dongmei Liu +5 位作者 Lina Zhu Yun Liu Xiaoning Wang Liang Qiao Weijia Zhang Baohong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1879-1882,共4页
An electrochemical immunosensor for sensitive detection of thyroid stimulating hormone(TSH) has been developed by using an inkjet printed microchip and based on a double signal amplification strategy using magnetic be... An electrochemical immunosensor for sensitive detection of thyroid stimulating hormone(TSH) has been developed by using an inkjet printed microchip and based on a double signal amplification strategy using magnetic beads(MBs), alkaline phosphatase(ALP) and p-aminophenyl phosphate(pAPP) reaction.Differential pulse voltammetry(DPV), cyclic voltammogram(CV) and amperometric i-t curve(i-t) were employed to characterize the immunosensor. High sensitivity and good selectivity were observed. The detection linear range was from 0.01 μIU/mL to 10 μIU/mL, in which the peak currents increased along with the concentration. The detection limit was 0.005 μIU/mL at S/N = 3. The immunosensor was also applied for TSH detection in human serum with recoveries from 98.0% to 101.8% and relative standard deviations from 1.3% to 3.1%, demonstrating potential value in clinical diagnosis. 展开更多
关键词 Electrochemical immunosensor Inkjet printed microchip signal amplification Thyroid stimulating hormone Alkaline phosphatase
原文传递
Signal Amplification for Highly Sensitive Immunosensing
16
作者 Huangxian Ju 《Journal of Analysis and Testing》 EI 2017年第1期53-70,共18页
To dissolve the bottleneck problem of life and biomedical science in detection of biomolecules with low abundance and acquisition of ultraweak biological signals,highly sensitive analytical methods coupling with the s... To dissolve the bottleneck problem of life and biomedical science in detection of biomolecules with low abundance and acquisition of ultraweak biological signals,highly sensitive analytical methods coupling with the specificity of biological recognition events have been quickly developed by the exploring of signal amplification strategies.These strategies have extensively been introduced into the development of highly sensitive immunosensing methods by combining with highly specific immunological recognition.They can be divided into two groups.One group of strategies attempts to transfer the immunological recognition event into large number of reporter probes or signal probes for signal readout by employing nano/micro-materials as vehicles for multi-labeling and/or molecular biological amplification for increasing the abundance of the signal molecules.The other uses nanomaterials or enzyme mimics as catalytic tools/tags to obtain enhanced detection signal.This review focuses on the significant advances in design of signal amplification strategies for highly sensitive immunosensing. 展开更多
关键词 signal amplification IMMUNOSENSING Immunological recognition Reporter probes Nanoparticles Enzyme mimics Polymerase chain reaction Rolling circle amplification Hybridization chain reaction
原文传递
Simple Enzyme-Free Biosensor for Highly Sensitive and Selective Detection of miR-21 Based on Multiple Signal Amplification Strategy
17
作者 Lin-Na Huang Zi-Jie Zhong +4 位作者 Qiu-Jun Lu Feng Chen Ling-Ling Xie Cui-Yan Wu You-Yu Zhang 《Journal of Analysis and Testing》 EI 2022年第1期27-34,共8页
Due to the fact that most microRNAs are small in size,low abundance in biological samples,homologous sequence among family members,and protein enzymes-based strategies display limited practical applications,therefore,... Due to the fact that most microRNAs are small in size,low abundance in biological samples,homologous sequence among family members,and protein enzymes-based strategies display limited practical applications,therefore,we reported a simple enzyme-free DNA sensor for microRNA detection utilizing a multiple signal amplification strategy.The sensing system termed as C-CHA-HCR includes six hairpin DNA reactants that are metastable on account of intramolecular hybridization.The DNA hairpin reactants are opened and hybridized with the corresponding complementary DNA strand in the presence of miR-21 via toehold-mediated CHA,HCR reaction,and circulation between CHA and HCR,resulting in a hugely amplifying signal output.Without introducing external protein enzymes,this sensing system showed highly sensitive and selective on the detection of miR-21.A linear response range of miR-21 from 25 pmol/L to 1 nmol/L with a limit of detection(LOD)of 1.8 pmol/L was obtained.This promising biosensor was successfully applied to the detection of microRNA in human serum samples with acceptable recovery rates,suggesting the potential applications in disease diagnosis,treatment,and prognosis. 展开更多
关键词 DNA biosensor MICRORNAS Enzyme-free FRET Multiple signal amplification
原文传递
Cascaded DNA circuits-programmed self-assembly of spherical nucleic acids for high signal amplification
18
作者 Xiang Li Dongbao Yao +6 位作者 Junxiang Zhou Xiang Zhou Xianbao Sun Bing Wei Chengxu Li Bin Zheng Haojun Liang 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第1期92-98,共7页
Signal amplification is an important issue in DNA nanotechnology and molecular diagnostics.In this work,we report a strategy for the catalytic self-assembly of spherical nucleic acids(SNAs)programmed by two-layer casc... Signal amplification is an important issue in DNA nanotechnology and molecular diagnostics.In this work,we report a strategy for the catalytic self-assembly of spherical nucleic acids(SNAs)programmed by two-layer cascaded DNA circuits through integrating an entropy-driven catalytic network,a catalytic hairpin assembly circuit,and a facile SNA assembly-based reporter system.This integrated system could implement^100,000-fold signal amplification in the presence of 1 pM of input target.Possessing powerful amplification ability of nucleic acid signal,our strategy should be of great potential in fabricating more robust dynamic networks to be applied for signal transduction,DNA computing,and nucleic acid-based diagnostics. 展开更多
关键词 catalytic self-assembly DNA circuit signal amplification spherical nucleic acids
原文传递
triple-node motif signal amplification bistable system the Fitz Hugh–Nagumo neuron
19
作者 丁万祥 顾长贵 梁晓明 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第2期189-192,共4页
It has been found that a triple-node feed-forward motif has a function of signal amplification, where two input nodes receive the external weak signal and jointly modulate the response of the third output node [Liang ... It has been found that a triple-node feed-forward motif has a function of signal amplification, where two input nodes receive the external weak signal and jointly modulate the response of the third output node [Liang et al.,Phys. Rev. E 88(2013) 012910]. We here show that the signal amplification can be further enhanced by adding a link between the two input nodes in the feed-forward motif. We further reveal that the coupling strength of the link regulates the enhancement of signal amplification in the modified feed-forward motif. We finally analyze the mechanism of signal amplification of such simple structure. 展开更多
关键词 A Simple Structure for signal amplification
原文传递
Target-induced Trivalent G-quadruplex/hemin DNAzyme for Colorimetric Detection of Hg^(2+) Based on an Exonuclease III Assisted Catalytic Hairpin Assembly
20
作者 Zhenghua LIU Zhonghai LI 《Agricultural Biotechnology》 2024年第1期51-57,共7页
Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo... Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type. 展开更多
关键词 G-quadruplex/hemin DNAzyme Multivalence Catalytic hairpin assembly Exonuclease III signal amplification Colorimetric detection
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部