To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a hi...To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a high computational cost.To reduce the computations,this paper proposes a twostep compressed acquisition method(TCAM)for the post-correlation signal parameters estimation.Compared with the fast Fourier transform(FFT)based methods,TCAM uses fewer frequency search points.In this way,the proposed method reduces complex multiplications,and uses real multiplications instead of improving the accuracy of the Doppler frequency and the Doppler rate.Furthermore,the differential process between two adjacent milliseconds is used for avoiding the impact of bit transition and the Doppler frequency on the integration peak.The results demonstrate that due to the reduction of complex multiplications,the computational cost of TCAM is lower than that of the FFT based method under the same signal to noise ratio(SNR).展开更多
Aiming at the problem that indoor positioning technology based on wireless ultra-wideband pulse technology is susceptible to non-line-of-sight effects and multipath effects in confined spaces and weak signal environme...Aiming at the problem that indoor positioning technology based on wireless ultra-wideband pulse technology is susceptible to non-line-of-sight effects and multipath effects in confined spaces and weak signal environments,a high-precision positioning system based on UWB and IMU in a confined environment is designed.The STM32 chip is used as the main control,and the data information of IMU and UWB is fused by the fusion filtering algorithm.Finally,the real-time information of the positioning is transmitted to the host computer and the cloud.The experimental results show that the positioning accuracy and positioning stability of the system have been improved in the non-line-of-sight case of closed environment.The system has high positioning accuracy in a closed environment,and the components used are consumer-grade,which has strong practicability.展开更多
ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal trans...ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.展开更多
随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数...随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。展开更多
介绍一种基于STM32单片机的环境噪声监测技术方案。通过采用微机电系统(Micro-Electro-Mechanical Systems,MEMS)麦克风阵列采集噪声信号,并利用数字信号处理(Digital Signal Processing,DSP)算法进行频谱分析与噪声评估,实现噪声信号...介绍一种基于STM32单片机的环境噪声监测技术方案。通过采用微机电系统(Micro-Electro-Mechanical Systems,MEMS)麦克风阵列采集噪声信号,并利用数字信号处理(Digital Signal Processing,DSP)算法进行频谱分析与噪声评估,实现噪声信号的高精度采集与实时处理。实验结果表明,应用该方案能够有效测量环境噪声,具有准确度、重复性良好,以及低成本、低功耗等应用优势,可适用于多种环境噪声监测场景。展开更多
基金supported by the National Natural Science Foundation of China(61901154,41704154)Zhejiang Province Science Foundation for Youths(LQ19F010006).
文摘To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a high computational cost.To reduce the computations,this paper proposes a twostep compressed acquisition method(TCAM)for the post-correlation signal parameters estimation.Compared with the fast Fourier transform(FFT)based methods,TCAM uses fewer frequency search points.In this way,the proposed method reduces complex multiplications,and uses real multiplications instead of improving the accuracy of the Doppler frequency and the Doppler rate.Furthermore,the differential process between two adjacent milliseconds is used for avoiding the impact of bit transition and the Doppler frequency on the integration peak.The results demonstrate that due to the reduction of complex multiplications,the computational cost of TCAM is lower than that of the FFT based method under the same signal to noise ratio(SNR).
文摘Aiming at the problem that indoor positioning technology based on wireless ultra-wideband pulse technology is susceptible to non-line-of-sight effects and multipath effects in confined spaces and weak signal environments,a high-precision positioning system based on UWB and IMU in a confined environment is designed.The STM32 chip is used as the main control,and the data information of IMU and UWB is fused by the fusion filtering algorithm.Finally,the real-time information of the positioning is transmitted to the host computer and the cloud.The experimental results show that the positioning accuracy and positioning stability of the system have been improved in the non-line-of-sight case of closed environment.The system has high positioning accuracy in a closed environment,and the components used are consumer-grade,which has strong practicability.
基金the National Key Basic Research Development Program (Grant No. 2000018605 and 1999011708) the Major Research Plan of NSFC (Grant No. 90102012) and the Chinese National Outstanding Youth Fund (Grant No. 40025106)
文摘ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.
文摘随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。
文摘介绍一种基于STM32单片机的环境噪声监测技术方案。通过采用微机电系统(Micro-Electro-Mechanical Systems,MEMS)麦克风阵列采集噪声信号,并利用数字信号处理(Digital Signal Processing,DSP)算法进行频谱分析与噪声评估,实现噪声信号的高精度采集与实时处理。实验结果表明,应用该方案能够有效测量环境噪声,具有准确度、重复性良好,以及低成本、低功耗等应用优势,可适用于多种环境噪声监测场景。