Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver ...Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.展开更多
This paper introduces several algorithms for signal estimation using binary-valued outputsensing.The main idea is derived from the empirical measure approach for quantized identification,which has been shown to be con...This paper introduces several algorithms for signal estimation using binary-valued outputsensing.The main idea is derived from the empirical measure approach for quantized identification,which has been shown to be convergent and asymptotically efficient when the unknown parametersare constants.Signal estimation under binary-valued observations must take into consideration oftime varying variables.Typical empirical measure based algorithms are modified with exponentialweighting and threshold adaptation to accommodate time-varying natures of the signals.Without anyinformation on signal generators,the authors establish estimation algorithms,interaction between noisereduction by averaging and signal tracking,convergence rates,and asymptotic efficiency.A thresholdadaptation algorithm is introduced.Its convergence and convergence rates are analyzed by using theODE method for stochastic approximation problems.展开更多
The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the ti...The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based ...For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low.展开更多
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two rec...The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.展开更多
Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the re...Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failu...By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.展开更多
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ...A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.展开更多
A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensor...A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.展开更多
A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO)...A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.展开更多
The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization...The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.展开更多
A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is r...A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different an- gles using chirp multiplication and Fourier transform (FT). For LFM signal which distributes as a straight line in time-frequency plane, the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR, thus the LFM signal of low SNR can be de- tected. Meanwhile, the location of the peak value relates to the parameters of the LFM signal. Numerical simulations and experimental results show that, the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately. Compared with the conventional fractional Fourier transform (FRFT), the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signa...In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signal. We propose a fast estimation method based on spectrum entropy method. With 984 records of adult calcaneus clinical data, we estimate the validity of the backscatter signal using this method. The results of the proposed method and the results of experience-base judgement were compared and analyzed. And two key parameters, the signal range length and the segment number of the spectrum entropy, were analyzed. The results show when the signal range length is 13 I^s and the segment number is 15 20, this method can get the best result (accuracy〉95%, sensitivity〉99%, specificity〉87%), while taking little calculation time (1.5 ms). Therefore, this spectrum entropy method can satisfy the accuracy and real-time requirements in the ultrasonic estimation for cancellous bone.展开更多
基金Supported by the National Natural Science Foundation of China (No.60027001).
文摘Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.
基金supported in part by the National Science Foundation under ECS-0329597 and DMS-0624849in part by the Air Force Office of Scientific Research under FA9550-10-1-0210+2 种基金supported by the National Science Foundation under DMS-0907753 and DMS-0624849in part by the Air Force Office of Scientific Research under FA9550-10-1-0210supported in part by a research grant from the Australian Research Council
文摘This paper introduces several algorithms for signal estimation using binary-valued outputsensing.The main idea is derived from the empirical measure approach for quantized identification,which has been shown to be convergent and asymptotically efficient when the unknown parametersare constants.Signal estimation under binary-valued observations must take into consideration oftime varying variables.Typical empirical measure based algorithms are modified with exponentialweighting and threshold adaptation to accommodate time-varying natures of the signals.Without anyinformation on signal generators,the authors establish estimation algorithms,interaction between noisereduction by averaging and signal tracking,convergence rates,and asymptotic efficiency.A thresholdadaptation algorithm is introduced.Its convergence and convergence rates are analyzed by using theODE method for stochastic approximation problems.
基金supported by the National Natural Science Foundation of China (60872003 61071214)+1 种基金the Doctoral Fund of Ministry of Education of China (20093201110005)the Foundation of Chinese National Defense Technology Key Laboratory (9140C1301031001)
文摘The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.
基金supported by the National Natural Science Foundation of China(6150117661201399)+1 种基金the Education Department of Heilongjiang Province Science and Technology Research Projects(12541638)the Developing Key Laboratory of Sensing Technology and Systems in Cold Region of Heilongjiang Province and Ministry of Education,(Heilongjiang University),P.R.China(P201408)
文摘For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low.
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金Projects 60372081, 30170259 and 30570475 supported by the National Natural Science Foundation of China, VSN-2005-01 the Opened Foundation of National Key-Lab of Vibration, Impact and Noise, 80523+1 种基金the Science Foundation of Hainan Province and Hj200501 the Foundation of Education Department of Hainan Province
文摘The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.
基金Supported by the National Natural Science Foundation of China (No.60801052)Aeronautical Science Foundation of China (No.2008ZC52026,2009ZC52036)
文摘Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金The National Natural Science Foundation of China(No.61502422)the Natural Science Foundation of Zhejiang Province(No.LY18F020028,LQ15F020006)the Natural Science Foundation of Zhejiang University of Technology(No.2014XY007)
文摘By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.
基金supported by the National Natural Science Foundation of China(6127130061405150)
文摘A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.
文摘A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60702015)
文摘A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(11234002)
文摘The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.
基金supported by the National Natural Science Foundation of China(11434012)
文摘A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different an- gles using chirp multiplication and Fourier transform (FT). For LFM signal which distributes as a straight line in time-frequency plane, the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR, thus the LFM signal of low SNR can be de- tected. Meanwhile, the location of the peak value relates to the parameters of the LFM signal. Numerical simulations and experimental results show that, the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately. Compared with the conventional fractional Fourier transform (FRFT), the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金supported by the National Natural Science Foundation of China(11327405,11525416,11604054,11504057)
文摘In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signal. We propose a fast estimation method based on spectrum entropy method. With 984 records of adult calcaneus clinical data, we estimate the validity of the backscatter signal using this method. The results of the proposed method and the results of experience-base judgement were compared and analyzed. And two key parameters, the signal range length and the segment number of the spectrum entropy, were analyzed. The results show when the signal range length is 13 I^s and the segment number is 15 20, this method can get the best result (accuracy〉95%, sensitivity〉99%, specificity〉87%), while taking little calculation time (1.5 ms). Therefore, this spectrum entropy method can satisfy the accuracy and real-time requirements in the ultrasonic estimation for cancellous bone.