A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
A Direction Of Arrival(DOA) estimator based on the signal separation principle is introduced, and one of representative multidimensional estimators is established by introducing Matrix Operator projection signal steer...A Direction Of Arrival(DOA) estimator based on the signal separation principle is introduced, and one of representative multidimensional estimators is established by introducing Matrix Operator projection signal steering Vector Excision(MOVE) operation. Thanks to Alternating Separation (AS) technique, the multidimensional problem is transformed into a series of one-dimensional optimal ones. Furthermore, an equivalent simplified implementation of the AS is obtained. Finally the definiteness and uniqueness of the estimator are analyzed.展开更多
Chloroplasts overproduce reactive oxygen species(ROS)under unfavorable environmental conditions,and these ROS are implicated in both signaling and oxidative damage.There is mounting evidence for their roles in transla...Chloroplasts overproduce reactive oxygen species(ROS)under unfavorable environmental conditions,and these ROS are implicated in both signaling and oxidative damage.There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses,but their targets,signaling cascades,and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood.Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses,from ROS perception to plant responses,in conditional mutants of Arabidopsis thaliana or under various stress conditions.Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways,with an emphasis on spatiotemporal regulation.ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones.This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules.We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.展开更多
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
基金Partially supported by the National Natural Science Foundation of China(No.60372036), Natural Science Foundation of Shaanxi Province (2002F24) and Funds from the Information Industry Ministry of China (2002XK610039)
文摘A Direction Of Arrival(DOA) estimator based on the signal separation principle is introduced, and one of representative multidimensional estimators is established by introducing Matrix Operator projection signal steering Vector Excision(MOVE) operation. Thanks to Alternating Separation (AS) technique, the multidimensional problem is transformed into a series of one-dimensional optimal ones. Furthermore, an equivalent simplified implementation of the AS is obtained. Finally the definiteness and uniqueness of the estimator are analyzed.
基金Research in the Kim laboratory has been supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant XDB27040102)the 100-Talent Program of the Chinese Academy of Sciences,and the National Natural Science Foundation of China(grant 31871397 to C.K.).
文摘Chloroplasts overproduce reactive oxygen species(ROS)under unfavorable environmental conditions,and these ROS are implicated in both signaling and oxidative damage.There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses,but their targets,signaling cascades,and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood.Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses,from ROS perception to plant responses,in conditional mutants of Arabidopsis thaliana or under various stress conditions.Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways,with an emphasis on spatiotemporal regulation.ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones.This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules.We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.