A signal processing scheme for a programmable system-on-chip(PSoC)based human body infrared tracking system is described.The purpose of this project is to convert the analog signal from a passive infrared(PIR)sensor t...A signal processing scheme for a programmable system-on-chip(PSoC)based human body infrared tracking system is described.The purpose of this project is to convert the analog signal from a passive infrared(PIR)sensor to a digital signal which will be used to calculate the correct position of a human body.This paper covers the analog design with PSoC,the analog to digital conversion and the software to eliminate noise.展开更多
This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current...This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.展开更多
This paper proposes the Application Specific Signal Processor(ASSP)-based implementation of the real-time signal processing system in both spatial domain and time domain for a phased-array radar. This paper also propo...This paper proposes the Application Specific Signal Processor(ASSP)-based implementation of the real-time signal processing system in both spatial domain and time domain for a phased-array radar. This paper also proposes the system-on-silicon hardware design of some ASSPs including the adaptive beamformer, FFT appliation specific integrated circuit, clutter map former and update, moving target extractor and video integrator. The advantages of the processing system are compact, efficient, and robust.展开更多
Self scanning photodiode array (SSPA) is a kind of solid state imaging sensor. The signal processing method using a special sector SSPA was investigated. Based on the principle and characteristics of SSPA, a signal ac...Self scanning photodiode array (SSPA) is a kind of solid state imaging sensor. The signal processing method using a special sector SSPA was investigated. Based on the principle and characteristics of SSPA, a signal acquisition and processing method controlled by computer was introduced. The amplification of weak signal, the matching of time sequence, the fast peak holding with low leakage, the high speed A/D conversion and nonlinear correction were discussed. This method can acquire the peak signal of every ring of sector SSPA with high accuracy and in real time. It can be used to detect the distribution of space light energy.展开更多
A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,stru...An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,structure of this approach and suitable neural network algorithms are described.The results of simulation experiments are also given.展开更多
A constant problem is to localize a number of acoustic sources, to separate their individual signals and to estimate their strengths in a propagation medium. An acoustic receiving array with signal processing algorith...A constant problem is to localize a number of acoustic sources, to separate their individual signals and to estimate their strengths in a propagation medium. An acoustic receiving array with signal processing algorithms is then used. The most widely used algorithm is the conventional beamforming algorithm but it has a very low resolution and high sidelobes that may cause a signal leakage problem. Several new signal processors for arrays of sensors are derived to evaluate the strengths of acoustic signals arriving at an array of sensors. In particular, we present the covariance vector estimator and the pseudoinverse of the array manifold matrix estimator. The covariance vector estimator uses only the correlations between sensors and the pseudoinverse of the array manifold matrix estimator operates with the minimum eigenvalues of the covariance matrix. Numerical and experimental results are presented.展开更多
Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signal...Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is propose...The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.展开更多
In array signal processing,number of signals is often a premise of estimating other parameters.For the sake of determining signal number in the condition of strong additive noise or a little sample data,an algorithm f...In array signal processing,number of signals is often a premise of estimating other parameters.For the sake of determining signal number in the condition of strong additive noise or a little sample data,an algorithm for detecting number of wideband signals is provided.First,technique of focusing is used for transforming signals into a same focusing subspace.Then the support vector machine(SVM)can be deduced by the information of eigenvalues and corresponding eigenvectors.At last,the signal number can be determined with the obtained decision function.Several simulations have been carried on verifying the proposed algorithm.展开更多
It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to...It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus(a common feature of the phase modulation signals).By introducing the temporal smoothing technique,the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest.Simulation results are included to illustrate the performance of the proposed beamformer.展开更多
This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limit...This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limited, this algorithm can improve the signal DOA estimation performances obviously, and its computational complexity scarcely increases. Finally, some simulation results to verify the theoretical analyses are presented.展开更多
This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be convenie...This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa- ter vehicles and deployed for adaptive spatial sampling. However, the use of such small aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho- rizontal linear array is used to passively localize acoustic sources in shallow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en- vironmental mismatch and enhance the stability of the estimation process. The proposed approach's ability to localize acoustic sources in shallow water at different signal-to-noise ratios is examined through the synthetic test cases where the sources are located at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a constant depth.展开更多
A novel universal preprocessing method is proposed to estimate angles of arrival,which is applicable to one-or two-dimensional high resolution processing based on arbitrarycenter-symmetric arrays (such as uniform line...A novel universal preprocessing method is proposed to estimate angles of arrival,which is applicable to one-or two-dimensional high resolution processing based on arbitrarycenter-symmetric arrays (such as uniform linear arrays, equal-spaced rectangular planar arraysand symmetric circular arrays). By mapping the complex signal space into the real one, the newmethod can effectively reduce the computation needed by the signal subspace direction findingtechniques without any performance degradation. In addition, the new preprocessing scheme itselfcan decorrelate the coherent signals received on the array. For regular array geometry such asuniform linear arrays and equal-spaced rectangular planar arrays, the popular spatial smoothingpreprocessing technique can be combined with the novel approach to improve the decorrelatingability. Simulation results confirm the above conclusions.展开更多
The system of Integrated-Optics Acousto-Optic RF Spectrum Analyzer (IOAOSA)consists of a laser diode, an Acousto-Optic (A-O) modulator, geodesic lenses and CCD detectorarray. The optical signal projected on the CCD ar...The system of Integrated-Optics Acousto-Optic RF Spectrum Analyzer (IOAOSA)consists of a laser diode, an Acousto-Optic (A-O) modulator, geodesic lenses and CCD detectorarray. The optical signal projected on the CCD array is converted into electrical signal andprocessed by the signal processing center which consists of a TMS 32010 system and an IBM-PC.The TMS 32010 with very high speed is used in a microcomputer system. A cycle sample methodis adopted to collect the data of the CCD video signal, sampling one per 40-point. After theprocessing, the frequency bandwidth, the resolution and the dynamic range of the system aremeasured to be 100 MHz, 8 MHz and 20 dB, respectively.展开更多
For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consis...For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.展开更多
文摘A signal processing scheme for a programmable system-on-chip(PSoC)based human body infrared tracking system is described.The purpose of this project is to convert the analog signal from a passive infrared(PIR)sensor to a digital signal which will be used to calculate the correct position of a human body.This paper covers the analog design with PSoC,the analog to digital conversion and the software to eliminate noise.
文摘This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.
文摘This paper proposes the Application Specific Signal Processor(ASSP)-based implementation of the real-time signal processing system in both spatial domain and time domain for a phased-array radar. This paper also proposes the system-on-silicon hardware design of some ASSPs including the adaptive beamformer, FFT appliation specific integrated circuit, clutter map former and update, moving target extractor and video integrator. The advantages of the processing system are compact, efficient, and robust.
基金Natural Science Foundation of Guangdong Province ( 000689 ) Foundation from Education Department ofZhejiang Province(20040446)
文摘Self scanning photodiode array (SSPA) is a kind of solid state imaging sensor. The signal processing method using a special sector SSPA was investigated. Based on the principle and characteristics of SSPA, a signal acquisition and processing method controlled by computer was introduced. The amplification of weak signal, the matching of time sequence, the fast peak holding with low leakage, the high speed A/D conversion and nonlinear correction were discussed. This method can acquire the peak signal of every ring of sector SSPA with high accuracy and in real time. It can be used to detect the distribution of space light energy.
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
文摘An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,structure of this approach and suitable neural network algorithms are described.The results of simulation experiments are also given.
文摘A constant problem is to localize a number of acoustic sources, to separate their individual signals and to estimate their strengths in a propagation medium. An acoustic receiving array with signal processing algorithms is then used. The most widely used algorithm is the conventional beamforming algorithm but it has a very low resolution and high sidelobes that may cause a signal leakage problem. Several new signal processors for arrays of sensors are derived to evaluate the strengths of acoustic signals arriving at an array of sensors. In particular, we present the covariance vector estimator and the pseudoinverse of the array manifold matrix estimator. The covariance vector estimator uses only the correlations between sensors and the pseudoinverse of the array manifold matrix estimator operates with the minimum eigenvalues of the covariance matrix. Numerical and experimental results are presented.
文摘Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.
基金supported by the National Science Foundation of China (No.61371169)the Aeronautical Science Foundation of China(No.20120152001)
文摘The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.
基金This work was supported by the National Natural Science Foundation of China under Grant 61501176Natural Science Foundation of Heilongjiang Province F2018025+1 种基金University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province UNPYSCT-2016017the postdoctoral scientific research developmental fund of Heilongjiang Province in 2017 LBH-Q17149.
文摘In array signal processing,number of signals is often a premise of estimating other parameters.For the sake of determining signal number in the condition of strong additive noise or a little sample data,an algorithm for detecting number of wideband signals is provided.First,technique of focusing is used for transforming signals into a same focusing subspace.Then the support vector machine(SVM)can be deduced by the information of eigenvalues and corresponding eigenvectors.At last,the signal number can be determined with the obtained decision function.Several simulations have been carried on verifying the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(No.61490691,61331019)
文摘It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus(a common feature of the phase modulation signals).By introducing the temporal smoothing technique,the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest.Simulation results are included to illustrate the performance of the proposed beamformer.
文摘This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limited, this algorithm can improve the signal DOA estimation performances obviously, and its computational complexity scarcely increases. Finally, some simulation results to verify the theoretical analyses are presented.
基金supported by the State Scholarship Fund(2011611091)supported by China Shipbuilding Industry Corporation
文摘This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa- ter vehicles and deployed for adaptive spatial sampling. However, the use of such small aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho- rizontal linear array is used to passively localize acoustic sources in shallow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en- vironmental mismatch and enhance the stability of the estimation process. The proposed approach's ability to localize acoustic sources in shallow water at different signal-to-noise ratios is examined through the synthetic test cases where the sources are located at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a constant depth.
文摘A novel universal preprocessing method is proposed to estimate angles of arrival,which is applicable to one-or two-dimensional high resolution processing based on arbitrarycenter-symmetric arrays (such as uniform linear arrays, equal-spaced rectangular planar arraysand symmetric circular arrays). By mapping the complex signal space into the real one, the newmethod can effectively reduce the computation needed by the signal subspace direction findingtechniques without any performance degradation. In addition, the new preprocessing scheme itselfcan decorrelate the coherent signals received on the array. For regular array geometry such asuniform linear arrays and equal-spaced rectangular planar arrays, the popular spatial smoothingpreprocessing technique can be combined with the novel approach to improve the decorrelatingability. Simulation results confirm the above conclusions.
基金Supported by National "863" High Technology Plans of China
文摘The system of Integrated-Optics Acousto-Optic RF Spectrum Analyzer (IOAOSA)consists of a laser diode, an Acousto-Optic (A-O) modulator, geodesic lenses and CCD detectorarray. The optical signal projected on the CCD array is converted into electrical signal andprocessed by the signal processing center which consists of a TMS 32010 system and an IBM-PC.The TMS 32010 with very high speed is used in a microcomputer system. A cycle sample methodis adopted to collect the data of the CCD video signal, sampling one per 40-point. After theprocessing, the frequency bandwidth, the resolution and the dynamic range of the system aremeasured to be 100 MHz, 8 MHz and 20 dB, respectively.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6278)the China Postdoctoral Science Foundation(2015M582586)the China Academy of Space Technology Innovation Fund
文摘For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.