Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to en...Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques.展开更多
This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicat...This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns.展开更多
Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is pres...Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.展开更多
Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can ex...Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can extract the potent time-frequency-domain characteristics of signals;however,the performance of conventional characteristics-based classification needs to be improved.Widely used deep learning algorithms(e.g.,convolutional neural networks(CNNs))can conduct classification by extracting high-dimensional data features,with outstanding performance.Hence,combining the advantages of signal processing and deep-learning algorithms can significantly enhance vibration recognition performance.A novel vibration recognition method based on signal processing and deep neural networks is proposed herein.First,environmental vibration signals are collected;then,signal processing is conducted to obtain the coefficient matrices of the time-frequency-domain characteristics using three typical algorithms:the wavelet transform,Hilbert-Huang transform,and Mel frequency cepstral coefficient extraction method.Subsequently,CNNs,long short-term memory(LSTM)networks,and combined deep CNN-LSTM networks are trained for vibration recognition,according to the time-frequencydomain characteristics.Finally,the performance of the trained deep neural networks is evaluated and validated.The results confirm the effectiveness of the proposed vibration recognition method combining signal preprocessing and deep learning.展开更多
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d...Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.展开更多
To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming c...To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming classes,and unsupervised cluseter new classes.The network of SNN-OWR is trained supervised with paired input data consisting of two samples from a known dataset.On the one hand,the network is required to have the ability to distinguish whether two samples are from the same class.On the other hand,the latent distribution of known class is forced to approach their own unique Gaussian distribution,which is prepared for the subsequent open set testing.During the test,the unknown class detection process based on Gaussian probability density function threshold is designed,and an unsupervised clustering algorithm of the unknown jamming is realized by using the prior knowledge of known classes.The simulation results show that when the jamming-to-noise ratio is more than 0d B,the accuracy of SNN-OWR algorithm for known jamming classes recognition,unknown jamming detection and unsupervised clustering of unknown jamming is about 95%.This indicates that the SNN-OWR algorithm can make the effect of the recognition of unknown jamming be almost the same as that of known jamming.展开更多
In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may b...In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition.展开更多
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi...In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved.展开更多
This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image c...This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image characteristics of text changes, the system can quickly and accurately segment image from complex background, finally the system extract different dimension and the feature of English and Arabia using digital projection transform coefficient method and to identify the corresponding number by BP neural network, solves the problem of automatic recognition of electric energy meter lead sealing.展开更多
This paper presents a fuzzy neural network used for monitoring breakage and wear of tools by vibration sig-nal. Which describes the relationship betwee too conditons and the monitoring indices and expermental results ...This paper presents a fuzzy neural network used for monitoring breakage and wear of tools by vibration sig-nal. Which describes the relationship betwee too conditons and the monitoring indices and expermental results indi-cate it is feasible to vibration signal for on-line drilling condition monitoring.展开更多
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ...With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process.展开更多
Natural language processing technologies have become more widely available in recent years,making them more useful in everyday situations.Machine learning systems that employ accessible datasets and corporate work to ...Natural language processing technologies have become more widely available in recent years,making them more useful in everyday situations.Machine learning systems that employ accessible datasets and corporate work to serve the whole spectrum of problems addressed in computational linguistics have lately yielded a number of promising breakthroughs.These methods were particularly advantageous for regional languages,as they were provided with cut-ting-edge language processing tools as soon as the requisite corporate information was generated.The bulk of modern people are unconcerned about the importance of reading.Reading aloud,on the other hand,is an effective technique for nour-ishing feelings as well as a necessary skill in the learning process.This paper pro-posed a novel approach for speech recognition based on neural networks.The attention mechanism isfirst utilized to determine the speech accuracy andfluency assessments,with the spectrum map as the feature extraction input.To increase phoneme identification accuracy,reading precision,for example,employs a new type of deep speech.It makes use of the exportchapter tool,which provides a corpus,as well as the TensorFlow framework in the experimental setting.The experimentalfindings reveal that the suggested model can more effectively assess spoken speech accuracy and readingfluency than the old model,and its evalua-tion model’s score outcomes are more accurate.展开更多
As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,whi...As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion.展开更多
We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary, image of zip code box and message of the two charact...We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary, image of zip code box and message of the two characters binary image: analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.展开更多
The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the co...The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.展开更多
We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characte...We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characters binary image; analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.展开更多
The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of mach...The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
文摘Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques.
文摘This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns.
文摘Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.
文摘Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can extract the potent time-frequency-domain characteristics of signals;however,the performance of conventional characteristics-based classification needs to be improved.Widely used deep learning algorithms(e.g.,convolutional neural networks(CNNs))can conduct classification by extracting high-dimensional data features,with outstanding performance.Hence,combining the advantages of signal processing and deep-learning algorithms can significantly enhance vibration recognition performance.A novel vibration recognition method based on signal processing and deep neural networks is proposed herein.First,environmental vibration signals are collected;then,signal processing is conducted to obtain the coefficient matrices of the time-frequency-domain characteristics using three typical algorithms:the wavelet transform,Hilbert-Huang transform,and Mel frequency cepstral coefficient extraction method.Subsequently,CNNs,long short-term memory(LSTM)networks,and combined deep CNN-LSTM networks are trained for vibration recognition,according to the time-frequencydomain characteristics.Finally,the performance of the trained deep neural networks is evaluated and validated.The results confirm the effectiveness of the proposed vibration recognition method combining signal preprocessing and deep learning.
文摘Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.
基金supported by the National Natural Science Foundation of China(U19B2016)Zhejiang Provincial Key Lab of Data Storage and Transmission Technology,Hangzhou Dianzi University。
文摘To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming classes,and unsupervised cluseter new classes.The network of SNN-OWR is trained supervised with paired input data consisting of two samples from a known dataset.On the one hand,the network is required to have the ability to distinguish whether two samples are from the same class.On the other hand,the latent distribution of known class is forced to approach their own unique Gaussian distribution,which is prepared for the subsequent open set testing.During the test,the unknown class detection process based on Gaussian probability density function threshold is designed,and an unsupervised clustering algorithm of the unknown jamming is realized by using the prior knowledge of known classes.The simulation results show that when the jamming-to-noise ratio is more than 0d B,the accuracy of SNN-OWR algorithm for known jamming classes recognition,unknown jamming detection and unsupervised clustering of unknown jamming is about 95%.This indicates that the SNN-OWR algorithm can make the effect of the recognition of unknown jamming be almost the same as that of known jamming.
基金This work was supported by the Natural Science Foundation of China(No.61902133)Fujian natural science foundation project(No.2018J05106)Xiamen Collaborative Innovation projects of Produces study grinds(3502Z20173046)。
文摘In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition.
基金supported in part by the National Natural Science Foundation of China under Grant 61461013in part of the Natural Science Foundation of Guangxi Province under Grant 2018GXNSFAA281179in part of the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing under Grant GXKL06160103.
文摘In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved.
文摘This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image characteristics of text changes, the system can quickly and accurately segment image from complex background, finally the system extract different dimension and the feature of English and Arabia using digital projection transform coefficient method and to identify the corresponding number by BP neural network, solves the problem of automatic recognition of electric energy meter lead sealing.
文摘This paper presents a fuzzy neural network used for monitoring breakage and wear of tools by vibration sig-nal. Which describes the relationship betwee too conditons and the monitoring indices and expermental results indi-cate it is feasible to vibration signal for on-line drilling condition monitoring.
文摘With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process.
基金the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4170008DSR06).
文摘Natural language processing technologies have become more widely available in recent years,making them more useful in everyday situations.Machine learning systems that employ accessible datasets and corporate work to serve the whole spectrum of problems addressed in computational linguistics have lately yielded a number of promising breakthroughs.These methods were particularly advantageous for regional languages,as they were provided with cut-ting-edge language processing tools as soon as the requisite corporate information was generated.The bulk of modern people are unconcerned about the importance of reading.Reading aloud,on the other hand,is an effective technique for nour-ishing feelings as well as a necessary skill in the learning process.This paper pro-posed a novel approach for speech recognition based on neural networks.The attention mechanism isfirst utilized to determine the speech accuracy andfluency assessments,with the spectrum map as the feature extraction input.To increase phoneme identification accuracy,reading precision,for example,employs a new type of deep speech.It makes use of the exportchapter tool,which provides a corpus,as well as the TensorFlow framework in the experimental setting.The experimentalfindings reveal that the suggested model can more effectively assess spoken speech accuracy and readingfluency than the old model,and its evalua-tion model’s score outcomes are more accurate.
基金supported by the Open Funding Project of National Key Laboratory of Human Factors Engineering(Grant NO.6142222190309)。
文摘As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion.
文摘We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary, image of zip code box and message of the two characters binary image: analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.
文摘The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.
文摘We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characters binary image; analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.
文摘The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency.