Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false...Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interfere...To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
Dairy products have become one of the most prevalent daily foods worldwide,but safety concerns are rising.In dairy farming,unscrupulous traders misuse antibiotics to treat some diseases such as mastitis in cows,leadin...Dairy products have become one of the most prevalent daily foods worldwide,but safety concerns are rising.In dairy farming,unscrupulous traders misuse antibiotics to treat some diseases such as mastitis in cows,leading to antibiotic residues in dairy products.Rapid,sensitive,and simple detection methods for antibiotic residues are particularly important for food safety in dairy products.Traditional detection technology can effectively detect antibiotics,but there are defects such as complicated pre-treatment and high cost.Biosensors are widely used in food safety due to fast detection speed,low detection cost,strong anti-interference ability,and suitability for the field application.Nevertheless,these sensors often fail to trigger the signal conversion output due to low target concentration.To cope with this issue,some high-efficiency signal amplification systems can be introduced to improve the detection sensitivity and linear range of biosensors.In this review,we focused on:(i)Sources and toxicity of major antibiotics in animal-derived foods.(ii)Nanomaterial-mediated biosensors for real-time detection of target antibiotics in animal-derived foods.(iii)Signal amplification techniques to increase the sensitivity of biosensors.Finally,future prospects and challenges in this research field are discussed.展开更多
The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a...The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.展开更多
Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix ...Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.展开更多
The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic ...The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic seizures(ES)has dramatically improved the life quality of the patients.Recent Electroencephalogram(EEG)related seizure detection mechanisms encountered several difficulties in real-time.The EEGs are the non-stationary signal,and seizure patternswould changewith patients and recording sessions.Further,EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs.Artificial intelligence(AI)methods in the domain of ES analysis use traditional deep learning(DL),and machine learning(ML)approaches.This article introduces an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network for Epileptic Seizure Detection(OAOFS-DBNECD)technique using EEG signals.The primary aim of the presented OAOFS-DBNECD system is to categorize and classify the presence of ESs.The suggested OAOFS-DBNECD technique transforms the EEG signals into.csv format at the initial stage.Next,the OAOFS technique selects an optimal subset of features using the preprocessed data.For seizure classification,the presented OAOFS-DBNECD technique applies Artificial Ecosystem Optimizer(AEO)with a deep belief network(DBN)model.An extensive range of simulations was performed on the benchmark dataset to ensure the enhanced performance of the presented OAOFS-DBNECD algorithm.The comparison study shows the significant outcomes of the OAOFS-DBNECD approach over other methodologies.In addition,the result of the suggested approach has been evaluated using the CHB-MIT database,and the findings demonstrate accuracy of 97.81%.These findings confirmed the best seizure categorization accuracy on the EEG data considered.展开更多
To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and...To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.展开更多
We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target i...We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement.The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system.Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10^−8 to 10^2 ng/g.Of great significance,the signal response in all OTA concentration ranges is at the same current scale,demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification.Finally,OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions.This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.展开更多
Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect...Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.展开更多
In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is respons...In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on...A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes.展开更多
In practical communication and radar systems, the phase of the received signal is random, the arrival time is unknown, the lasting time is limited and the SNR is often very low. In order to realize the detection of th...In practical communication and radar systems, the phase of the received signal is random, the arrival time is unknown, the lasting time is limited and the SNR is often very low. In order to realize the detection of the signal, the method of using a group of nonlinear differential equations is presented. The theory of this chaos-based detection is analyzed. Computer simulation indicates that the shortest lasting time of the transient signal that can be detected out is 12 periods, the detection error of arrival time is less than 7/8 signal' s period, the detection characteristics are got using Monte-Carlo simulation.展开更多
Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-sta...Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.展开更多
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ...To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.展开更多
Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intel...Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.展开更多
基金the Scientific Research Fund of Hunan Provincial Education Department(23A0423).
文摘Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900602)the National Natural Science Foundation of China(No.61875230).
文摘To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金We thank the Natural Science Foundation of Hubei Province of China(2023AFB330)the China Postdoctoral Science Foundation(2022M721275)the Hubei Provincial Market Supervision Administration Science and Technology Program Project(Hbscjg-KJ2021002)for financial support.
文摘Dairy products have become one of the most prevalent daily foods worldwide,but safety concerns are rising.In dairy farming,unscrupulous traders misuse antibiotics to treat some diseases such as mastitis in cows,leading to antibiotic residues in dairy products.Rapid,sensitive,and simple detection methods for antibiotic residues are particularly important for food safety in dairy products.Traditional detection technology can effectively detect antibiotics,but there are defects such as complicated pre-treatment and high cost.Biosensors are widely used in food safety due to fast detection speed,low detection cost,strong anti-interference ability,and suitability for the field application.Nevertheless,these sensors often fail to trigger the signal conversion output due to low target concentration.To cope with this issue,some high-efficiency signal amplification systems can be introduced to improve the detection sensitivity and linear range of biosensors.In this review,we focused on:(i)Sources and toxicity of major antibiotics in animal-derived foods.(ii)Nanomaterial-mediated biosensors for real-time detection of target antibiotics in animal-derived foods.(iii)Signal amplification techniques to increase the sensitivity of biosensors.Finally,future prospects and challenges in this research field are discussed.
基金the National Natural Science Foundation of China(Grant No.61871318)the Key Research and Development Projects in Shaanxi Province(Grant No.2023YBGY-044)the Key Laboratory System Control and Intelligent Information Processing(Grant No.2020CP10)。
文摘The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.:ZR2020QC250)China Agriculture Research System(Grant No.:CARS-38)+1 种基金Modern Agricultural Technology Industry System of Shandong Province(Grant No.:SDAIT10-10)Key Technology Research and Development Program of Shandong(Grant Nos.:2021CXGC010809 and 2021TZXD012).
文摘Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
文摘The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic seizures(ES)has dramatically improved the life quality of the patients.Recent Electroencephalogram(EEG)related seizure detection mechanisms encountered several difficulties in real-time.The EEGs are the non-stationary signal,and seizure patternswould changewith patients and recording sessions.Further,EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs.Artificial intelligence(AI)methods in the domain of ES analysis use traditional deep learning(DL),and machine learning(ML)approaches.This article introduces an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network for Epileptic Seizure Detection(OAOFS-DBNECD)technique using EEG signals.The primary aim of the presented OAOFS-DBNECD system is to categorize and classify the presence of ESs.The suggested OAOFS-DBNECD technique transforms the EEG signals into.csv format at the initial stage.Next,the OAOFS technique selects an optimal subset of features using the preprocessed data.For seizure classification,the presented OAOFS-DBNECD technique applies Artificial Ecosystem Optimizer(AEO)with a deep belief network(DBN)model.An extensive range of simulations was performed on the benchmark dataset to ensure the enhanced performance of the presented OAOFS-DBNECD algorithm.The comparison study shows the significant outcomes of the OAOFS-DBNECD approach over other methodologies.In addition,the result of the suggested approach has been evaluated using the CHB-MIT database,and the findings demonstrate accuracy of 97.81%.These findings confirmed the best seizure categorization accuracy on the EEG data considered.
基金supported by the Aeronautical Science Fund of China(201455960252015209619)
文摘To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.
基金This work is financially supported by the NSFC grant of 21475030the S&T Research Project of Anhui Province15czz03109the National 10000 Talents-Youth Top-notch Talent Program.
文摘We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement.The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system.Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10^−8 to 10^2 ng/g.Of great significance,the signal response in all OTA concentration ranges is at the same current scale,demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification.Finally,OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions.This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.
基金supported by the National Science and Technology Project(Grant No.2012BAK19B04)the Spark Program of Earthquake Sciences,China Earthquake Administration(Grant No.XH12029)
文摘Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natural Science Foundation of Shanxi Province(No.2012021011-2)The Project Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
基金the National Natural Science Foundation of China(No.61671470).
文摘A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes.
文摘In practical communication and radar systems, the phase of the received signal is random, the arrival time is unknown, the lasting time is limited and the SNR is often very low. In order to realize the detection of the signal, the method of using a group of nonlinear differential equations is presented. The theory of this chaos-based detection is analyzed. Computer simulation indicates that the shortest lasting time of the transient signal that can be detected out is 12 periods, the detection error of arrival time is less than 7/8 signal' s period, the detection characteristics are got using Monte-Carlo simulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61071025 and 61502538)
文摘Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.
基金supported by Project of the National Natural Science Foundation of China (No.62073256, 61773305)the Key Science and Technology Program of Shaanxi Province (No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project (No.2020KJRC0041)。
文摘To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.
文摘Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.