Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem...Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
Signal-to-noise ratio (SNR) and channel estimations are critical for 60-GHz communications to track the optimal trans- mission and reception beam pairs. However, the excessive pilot overhead for the estima- tions se...Signal-to-noise ratio (SNR) and channel estimations are critical for 60-GHz communications to track the optimal trans- mission and reception beam pairs. However, the excessive pilot overhead for the estima- tions severely reduces system throughput in fast-rotation scenarios. In order to address this problem, we firstly demonstrate the potential sparseness property of 60-GHz channel in beam tracking; subsequently, via exploiting this property, we propose a novel compressed SNR-and-channel estimation. The estimation is conducted in a three-stage fashion, includ- ing the unstructured estimation, nonzero-tap detection, and structured estimation with non- zero-tap location. Numerical simulations show that, in the case of substantial reduction of the pilot overhead, the proposed estimator still reveals a significant improvement in terms of estimation performance over the scheme in IEEE 802.1 lad. Furthermore, it is also demon- strated that the proposed SNR and channel estimators can approach the lower bounds in sparse channels so long as SNR exceeds 8 dB.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ...Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel.展开更多
The technique of SNR estimation is one of the key technologies in adaptive frequency hopping system. The methods of channel quality estimation for non-linear continuous phase modulation (CPM) signals have some limitat...The technique of SNR estimation is one of the key technologies in adaptive frequency hopping system. The methods of channel quality estimation for non-linear continuous phase modulation (CPM) signals have some limitations. Therefore, the algorithm of channel quality estimation for CPM signals is worthy of further study. Some similar phase characteristics between sampling CPM and MPSK motivate us to propose a channel estimation algorithm with applications to nonlinear CPM using linear modulation signal processing. A comprehensive analysis of LDPC-CPM schemes using proposed algorithm is presented, and simulation results indicate that the proposed method can not only estimate channel quality well but also make the normalized MSE (NMSE) of SNR estimate close to/less than 0.1 dB at SNR of 4 dB using short block codes. It shows that the algorithm in this paper is effective enough to estimate the signal to noise ratio (SNR). Meanwhile, the algorithm in this paper reduces the complexity of computation compared with other traditional algorithms.展开更多
It is well-known that turbo equalization with the max-log-map (MLM) rather than the log-map (LM) algorithm is insensitive to signal to noise ratio (SNR) mismatch. As our first contribution, an improved MLM algor...It is well-known that turbo equalization with the max-log-map (MLM) rather than the log-map (LM) algorithm is insensitive to signal to noise ratio (SNR) mismatch. As our first contribution, an improved MLM algorithm called scaled max-log-map (SMLM) algorithm is presented. Simulation results show that the SMLM scheme can dramatically outperform the MLM without sacrificing the robustness against SNR mismatch. Unfortunately, its performance is still inferior to that of the LM algorithm with exact SNR knowledge over the class of high-loss channels. As our second contribution, a switching turbo equalization scheme, which switches between the SMLM and LM schemes, is proposed to practically close the performance gap. It is based on a novel way to estimate the SNR from the reliability values of the extrinsic information of the SMLM algorithm.展开更多
A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estim...A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.展开更多
It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and norma...It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and normalize the information of zero frequency of received signal by the Wigner-Vile Distribution(WVD) transformation and then get the approximate power of original signal by mathematic transformation,at last,we get the estimate value of SNR by the known account formula of SNR.Simulation results show that it is correct and feasible.展开更多
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ...This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.展开更多
In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several over...In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.展开更多
As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analy...As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR.展开更多
To increase the limited spatial processing gain of physical aperture of UUV(unmanned underwater vehicle) linear array and satisfy the demand of long distance target detection,a flank array based on the synthetic apert...To increase the limited spatial processing gain of physical aperture of UUV(unmanned underwater vehicle) linear array and satisfy the demand of long distance target detection,a flank array based on the synthetic aperture technique is introduced into UUV,and a modified beam domain passive synthetic aperture processing algorithm(BDPSA) suitable for the flank array is proposed concurrently,which sums the beamforming of linear array coherently for successive measurement after phase compensation to make the beam output peak corresponding to the expected target bearing,expand the array aperture effectively and improve the resolution.The simulation of detection probability and distinguishing probability for double targets within 1,1/2,1/3 and 1/4 beam-width shows that the method of BDPSA has lower SNR threshold for target distinguishing,improves the detection probability and distinguishing probability under low SNR,and realizes the long-distance and high resolution bearing estimation because of the obvious improvement of the spatial array gain.展开更多
An estimation and compensation algorithm for underwater acoustic pipeline channel is investigated.A joint time-frequency adaptive signal-to-noise ratio(SNR)estimation based on the maximum likelihood method is introd...An estimation and compensation algorithm for underwater acoustic pipeline channel is investigated.A joint time-frequency adaptive signal-to-noise ratio(SNR)estimation based on the maximum likelihood method is introduced firstly,and the Cramer-Rao lower bound(CRLB)is proposed so as to evaluate the performance of the SNR estimation algorithm.For frequency-selective fading channel part,estimation and compensation are made to improve the robustness of the system on the basis of the LMS algorithm.Furthermore,real-time update iteration algorithm in the frequency domain is investigated to realize synchronous receiving and estimation.For verification,simulations and actual data tests were made,and the results show that the algorithm possesses great robustness,efficiency and accuracy inrealization of SNR estimation,signal detection and frequency impulse compensation for the channel.展开更多
Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are imp...Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.展开更多
Generalized cross-correlation is considered as the most straightforward time delay estimation algorithm.Depending on various weighting function,different methods were derived and a straightforward method,named phase t...Generalized cross-correlation is considered as the most straightforward time delay estimation algorithm.Depending on various weighting function,different methods were derived and a straightforward method,named phase transform(PHAT)has been widely used.PHAT is well-known for its robustness to reverberation and its sensitivity to noise,which is partly due to the fact that PHAT distributes same weights to the frequencies dominated by signal or noise.To alleviate this problem,two weighting functions are proposed in this paper.By taking a posteriori signal-to-noise ratio(SNR)into account to classify reliable and unreliable frequencies,different weights could be assigned.The first proposed weighting function borrows the idea of binary mask and distributes same weights to frequencies in same set,whereas,the second one assigns weights based on coherence function.Experiments showed the robustness of proposed methods to reverberation and noise for improving the performance of time delay estimation through various criteria.展开更多
基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对线性调频(Linear Frequency Modulated,LFM)信号参数进行估计,问题关键是确定FRFT最佳阶数,根据误差迭代思想提出新的参数估计算法,该算法利用归一化带宽和旋转角的转化关系...基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对线性调频(Linear Frequency Modulated,LFM)信号参数进行估计,问题关键是确定FRFT最佳阶数,根据误差迭代思想提出新的参数估计算法,该算法利用归一化带宽和旋转角的转化关系,由估计误差推算角度差值,有效降低了运算量,不需要调频斜率正负的先验信息,改进的对数搜索算法可以进一步提高参数估计结果的稳定性和可靠性。仿真结果表明,信噪比在-8 dB以上时该方法在高效率的前提下仍具有良好的参数估计性能,平均估计误差在1%以内,估计结果接近Cramer-Rao下限,满足工程实时处理需求。展开更多
基金the National Natural Science Foundation of China(Nos.11774073 and 51279033).
文摘Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.
基金supported by the National Natural Science Foundation of China(NSFC) under Grant No.61201189 and 61132002National High Tech(863) Projects under Grant No.2011AA010202+1 种基金Research Fund of Tsinghua University under Grant No.2011Z05117 and 20121087985Shenzhen Strategic Emerging Industry Development Special Funds under Grant No. CXZZ20120616141708264
文摘Signal-to-noise ratio (SNR) and channel estimations are critical for 60-GHz communications to track the optimal trans- mission and reception beam pairs. However, the excessive pilot overhead for the estima- tions severely reduces system throughput in fast-rotation scenarios. In order to address this problem, we firstly demonstrate the potential sparseness property of 60-GHz channel in beam tracking; subsequently, via exploiting this property, we propose a novel compressed SNR-and-channel estimation. The estimation is conducted in a three-stage fashion, includ- ing the unstructured estimation, nonzero-tap detection, and structured estimation with non- zero-tap location. Numerical simulations show that, in the case of substantial reduction of the pilot overhead, the proposed estimator still reveals a significant improvement in terms of estimation performance over the scheme in IEEE 802.1 lad. Furthermore, it is also demon- strated that the proposed SNR and channel estimators can approach the lower bounds in sparse channels so long as SNR exceeds 8 dB.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
基金supported by the National Natural Science Foundation of China under Grant No. 60372022Program for New Century Excellent Talentsin University under Grant No. NCET-05-0806
文摘Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel.
文摘The technique of SNR estimation is one of the key technologies in adaptive frequency hopping system. The methods of channel quality estimation for non-linear continuous phase modulation (CPM) signals have some limitations. Therefore, the algorithm of channel quality estimation for CPM signals is worthy of further study. Some similar phase characteristics between sampling CPM and MPSK motivate us to propose a channel estimation algorithm with applications to nonlinear CPM using linear modulation signal processing. A comprehensive analysis of LDPC-CPM schemes using proposed algorithm is presented, and simulation results indicate that the proposed method can not only estimate channel quality well but also make the normalized MSE (NMSE) of SNR estimate close to/less than 0.1 dB at SNR of 4 dB using short block codes. It shows that the algorithm in this paper is effective enough to estimate the signal to noise ratio (SNR). Meanwhile, the algorithm in this paper reduces the complexity of computation compared with other traditional algorithms.
基金This work was supported by the National Nature Science Foundation of China under Grant No.60496313, 60502010, and 60602008.
文摘It is well-known that turbo equalization with the max-log-map (MLM) rather than the log-map (LM) algorithm is insensitive to signal to noise ratio (SNR) mismatch. As our first contribution, an improved MLM algorithm called scaled max-log-map (SMLM) algorithm is presented. Simulation results show that the SMLM scheme can dramatically outperform the MLM without sacrificing the robustness against SNR mismatch. Unfortunately, its performance is still inferior to that of the LM algorithm with exact SNR knowledge over the class of high-loss channels. As our second contribution, a switching turbo equalization scheme, which switches between the SMLM and LM schemes, is proposed to practically close the performance gap. It is based on a novel way to estimate the SNR from the reliability values of the extrinsic information of the SMLM algorithm.
文摘A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.
文摘It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and normalize the information of zero frequency of received signal by the Wigner-Vile Distribution(WVD) transformation and then get the approximate power of original signal by mathematic transformation,at last,we get the estimate value of SNR by the known account formula of SNR.Simulation results show that it is correct and feasible.
基金supported by the National Natural Science Foundation of China(62071335,61931015,61831009)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.
文摘In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.
基金Key Research and Development Program of Anhui Province(No.201904a07020073)Science and Technology Foundation of Electronic Test&Measurement Laboratory(No.6142001180307)National Basic Research Program(No.JSJL2018210C003)。
文摘As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR.
文摘To increase the limited spatial processing gain of physical aperture of UUV(unmanned underwater vehicle) linear array and satisfy the demand of long distance target detection,a flank array based on the synthetic aperture technique is introduced into UUV,and a modified beam domain passive synthetic aperture processing algorithm(BDPSA) suitable for the flank array is proposed concurrently,which sums the beamforming of linear array coherently for successive measurement after phase compensation to make the beam output peak corresponding to the expected target bearing,expand the array aperture effectively and improve the resolution.The simulation of detection probability and distinguishing probability for double targets within 1,1/2,1/3 and 1/4 beam-width shows that the method of BDPSA has lower SNR threshold for target distinguishing,improves the detection probability and distinguishing probability under low SNR,and realizes the long-distance and high resolution bearing estimation because of the obvious improvement of the spatial array gain.
文摘An estimation and compensation algorithm for underwater acoustic pipeline channel is investigated.A joint time-frequency adaptive signal-to-noise ratio(SNR)estimation based on the maximum likelihood method is introduced firstly,and the Cramer-Rao lower bound(CRLB)is proposed so as to evaluate the performance of the SNR estimation algorithm.For frequency-selective fading channel part,estimation and compensation are made to improve the robustness of the system on the basis of the LMS algorithm.Furthermore,real-time update iteration algorithm in the frequency domain is investigated to realize synchronous receiving and estimation.For verification,simulations and actual data tests were made,and the results show that the algorithm possesses great robustness,efficiency and accuracy inrealization of SNR estimation,signal detection and frequency impulse compensation for the channel.
基金Project supported by the National Research and Development Project for Key Scientific Instruments(Grant No.CZBZDYZ20140002)the National Natural Science Foundation of China(Grant Nos.11535015,11305173,and 11375225)+2 种基金the project supported by Institute of High Energy Physics,Chinese Academy of Sciences(Grant No.Y4545320Y2)the Fundamental Research Funds for the Central Universities(Grant No.WK2310000065)Wali Faiz,acknowledges and wishes to thank the Chinese Academy of Sciences and The World Academy of Sciences(CAS-TWAS)President’s Fellowship Program for generous financial support
文摘Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.
基金supported by the National Natural Science Foundation of China(Grant No.61831019).
文摘Generalized cross-correlation is considered as the most straightforward time delay estimation algorithm.Depending on various weighting function,different methods were derived and a straightforward method,named phase transform(PHAT)has been widely used.PHAT is well-known for its robustness to reverberation and its sensitivity to noise,which is partly due to the fact that PHAT distributes same weights to the frequencies dominated by signal or noise.To alleviate this problem,two weighting functions are proposed in this paper.By taking a posteriori signal-to-noise ratio(SNR)into account to classify reliable and unreliable frequencies,different weights could be assigned.The first proposed weighting function borrows the idea of binary mask and distributes same weights to frequencies in same set,whereas,the second one assigns weights based on coherence function.Experiments showed the robustness of proposed methods to reverberation and noise for improving the performance of time delay estimation through various criteria.