期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence and optimization of parameters of prepreg viscosity during placement
1
作者 Lei ZU Xianzhao XIA +4 位作者 Qian ZHANG Xiaolong JIA Huabi WANG Guiming ZHANG Jinhu LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期438-449,共12页
This paper tested the viscosity of prepreg in the automatic placement process, and conducted the probe and placement-90° peel tests through the test systems. The law of variation of prepreg viscosity during the l... This paper tested the viscosity of prepreg in the automatic placement process, and conducted the probe and placement-90° peel tests through the test systems. The law of variation of prepreg viscosity during the laying process was studied through these tests under different conditions by taking the peel force to intuitively and quantitatively characterise the viscosity of the prepreg.The results show that this viscosity is inversely proportional to the laying rate, proportional to the laying pressure, and quadratic to the laying temperature. Then, peel tests were simulated to validate both the correctness of the peel test and that of the probe test data fitting the two-line cohesion model. On this basis, a response surface test for laying and peeling was designed. Taking viscous peel force as the response target, the laying process parameters were optimised and the significance of their influence was further studied. The error between the test value and the predicted value of the maximum viscous peel force is 3.03%. 展开更多
关键词 Automatic placement Cohesion model Optimization Peel test Probe test Significance of influence VISCOSITY
原文传递
Study on Thermal Characteristics of a Novel Glass Curtain Wall System
2
作者 FENG Chaoqing CHEN Xin’ge +3 位作者 WANG Rui XU Zhao ZHANG Lizhuang YAN Suying 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期1959-1969,共11页
In order to solve the conflict between indoor lighting and PV cells in building-integrated photovoltaic/thermal(BIPV/T) systems, a glass curtain wall system based on a tiny transmissive concentrator is proposed. This ... In order to solve the conflict between indoor lighting and PV cells in building-integrated photovoltaic/thermal(BIPV/T) systems, a glass curtain wall system based on a tiny transmissive concentrator is proposed. This glass curtain wall has a direct influence on the heat transfer between indoor and outdoor, and the operating parameters of air and water inlet temperature, indoor and outdoor temperature, and radiation intensity have a significant influence on the heat transfer characteristics of the glass curtain wall. The 3D model is established by SoildWorks software, and the thermal characteristics of the new glass curtain wall system are simulated through computational fluid dynamics(CFD) method. Thermal performance was tested under actual weather for the winter working conditions. The CFD simulation results are verified by the test results under actual weather. The results show that thermal efficiency simulation results are in good agreement with the experimental results of the new glass curtain wall system. The simulation conditions were designed by using the orthogonal method, and the significance analysis of the influencing factors of the indoor wall surface heat gain was carried out. With the increase of the bottom heat flux and the air velocity, the heat absorption of the inner wall surface increases. When the wind speed is 0.1 m/s, the heat flow on the bottom surface rises from 500 W/m^(2) to 2500 W/m^(2), and the heat flow intensity on the interior wall changes from 10.31 W/m^(2) to -29.12 W/m^(2). Under typical working conditions, the new glass curtain wall system can reduce the indoor heat load by 47.5% than ordinary glass curtain wall. 展开更多
关键词 glass curtain wall thermal characteristics orthogonal experimental design significant influencing factors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部