期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ant colony ATTA clustering algorithm of rock mass structural plane in groups 被引量:9
1
作者 李夕兵 王泽伟 +1 位作者 彭康 刘志祥 《Journal of Central South University》 SCIE EI CAS 2014年第2期709-714,共6页
Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by ... Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by the use of ATTA clustering methods based on ant colony piles,and Silhouette index was introduced to evaluate the clustering effect.The clustering analysis of the measured data of Sanshandao Gold Mine shows that ant colony ATTA-based clustering method does better than K-mean clustering analysis.Meanwhile,clustering results of ATTA method based on pole Euclidean distance and ATTA method based on normal vector spherical distance have a great consistence.The clustering results are most close to the pole isopycnic graph.It can efficiently realize grouping of structural plane and determination of the dominant structural surface direction.It is made up for the defects of subjectivity and inaccuracy in icon measurement approach and has great engineering value. 展开更多
关键词 rock mass discontinuity cluster analysis ant colony ATTA algorithm distance function silhouette index
下载PDF
Evaluating Partitioning Based Clustering Methods for Extended Non-negative Matrix Factorization (NMF)
2
作者 Neetika Bhandari Payal Pahwa 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2043-2055,共13页
Data is humongous today because of the extensive use of World WideWeb, Social Media and Intelligent Systems. This data can be very important anduseful if it is harnessed carefully and correctly. Useful information can... Data is humongous today because of the extensive use of World WideWeb, Social Media and Intelligent Systems. This data can be very important anduseful if it is harnessed carefully and correctly. Useful information can beextracted from this massive data using the Data Mining process. The informationextracted can be used to make vital decisions in various industries. Clustering is avery popular Data Mining method which divides the data points into differentgroups such that all similar data points form a part of the same group. Clusteringmethods are of various types. Many parameters and indexes exist for the evaluationand comparison of these methods. In this paper, we have compared partitioningbased methods K-Means, Fuzzy C-Means (FCM), Partitioning AroundMedoids (PAM) and Clustering Large Application (CLARA) on secure perturbeddata. Comparison and identification has been done for the method which performsbetter for analyzing the data perturbed using Extended NMF on the basis of thevalues of various indexes like Dunn Index, Silhouette Index, Xie-Beni Indexand Davies-Bouldin Index. 展开更多
关键词 Clustering CLARA Davies-Bouldin index Dunn index FCM intelligent systems K-means non-negative matrix factorization(NMF) PAM privacy preserving data mining silhouette index Xie-Beni index
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部