This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition (Quartz-Feldspar-Lith...This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition (Quartz-Feldspar-Lithic (QFL) fragment), Zircon-Tourmaline-Rutile (ZTR) index, and mineral chemistry of heavy detrital minerals of the framework. The study also examines the compositional variation of the sandstone in relation to the evolution of the Kutch Basin, which originated as a rift basin during the Late Triassic and evolved into a passive margin basin by the end Cretaceous. This study analyzes sandstone samples of Jhumara, Jhuran and Bhuj Formations of Middle Jurassic, Upper Jurassic and Lower Cretaceous, respectively, in the Kutch Mainland. Sandstones record a compositional evolution from arkosic to subarkosic as the feldspar content decreases from 68% in the Jhumara Formation to 27% in the Bhuj Formation with intermediate values in the Jhuran Formation. The QFL modal composition indicates basement uplifted and transitional continental settings at source. Heavy mineral content of these sandstones reveals the occurrence of zircon, tourmaline, rutile, garnet, apatite, monazite and opaque minerals. Sub-rounded to well-rounded zircon grains indicate a polycyclic origin. ZTR indices for samples in Jhumara, Jhuran and Bhuj Formations are 25%, 30% and 50% respectively. Chemistry of opaque minerals reveals the occurrence of detrital varieties such as ilmenite, rutile, hematite/magnetite and pyrite, in a decreasing order of abundances. Chemistry of ilmenites in the Jhumara Formation reveals its derivation from dual felsic igneous and metabasic source, while those in Jhuran and Bhuj Formations indicate a metabasic derivation. Chemistry of garnet reveals predominantly Fe-rich (almandine) variety of metabasic origin. X-ray microscopic study provides the percentage of heavy minerals ranging from 3% to 5.260. QFL detrital modes reflect the evolution of the basin from an active rift to a passive margin basin during the Mesozoic. Integration of results from QFL modal composition of the sandstones, heavy mineral analysis and mineral chemistry, suggests sediment supply from both northern and eastern highlands during the Middle Jurassic. The uplift along the Kutch Mainland Fault in the Early Cretaceous results in curtailment of sediment input from north.展开更多
基金Department of Science and Technology, Government of India for financial support through grant SR/ S4/ES-709/2014
文摘This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition (Quartz-Feldspar-Lithic (QFL) fragment), Zircon-Tourmaline-Rutile (ZTR) index, and mineral chemistry of heavy detrital minerals of the framework. The study also examines the compositional variation of the sandstone in relation to the evolution of the Kutch Basin, which originated as a rift basin during the Late Triassic and evolved into a passive margin basin by the end Cretaceous. This study analyzes sandstone samples of Jhumara, Jhuran and Bhuj Formations of Middle Jurassic, Upper Jurassic and Lower Cretaceous, respectively, in the Kutch Mainland. Sandstones record a compositional evolution from arkosic to subarkosic as the feldspar content decreases from 68% in the Jhumara Formation to 27% in the Bhuj Formation with intermediate values in the Jhuran Formation. The QFL modal composition indicates basement uplifted and transitional continental settings at source. Heavy mineral content of these sandstones reveals the occurrence of zircon, tourmaline, rutile, garnet, apatite, monazite and opaque minerals. Sub-rounded to well-rounded zircon grains indicate a polycyclic origin. ZTR indices for samples in Jhumara, Jhuran and Bhuj Formations are 25%, 30% and 50% respectively. Chemistry of opaque minerals reveals the occurrence of detrital varieties such as ilmenite, rutile, hematite/magnetite and pyrite, in a decreasing order of abundances. Chemistry of ilmenites in the Jhumara Formation reveals its derivation from dual felsic igneous and metabasic source, while those in Jhuran and Bhuj Formations indicate a metabasic derivation. Chemistry of garnet reveals predominantly Fe-rich (almandine) variety of metabasic origin. X-ray microscopic study provides the percentage of heavy minerals ranging from 3% to 5.260. QFL detrital modes reflect the evolution of the basin from an active rift to a passive margin basin during the Mesozoic. Integration of results from QFL modal composition of the sandstones, heavy mineral analysis and mineral chemistry, suggests sediment supply from both northern and eastern highlands during the Middle Jurassic. The uplift along the Kutch Mainland Fault in the Early Cretaceous results in curtailment of sediment input from north.