In this study,a crack-free pyrolysis process of partially cured precursor powder compacts was developed to prepare dense silicon boron carbonitride(SiBCN)monoliths at much lower temperatures(1300℃),thereby circumvent...In this study,a crack-free pyrolysis process of partially cured precursor powder compacts was developed to prepare dense silicon boron carbonitride(SiBCN)monoliths at much lower temperatures(1300℃),thereby circumventing the challenges of sintering densification(>1800℃).Unlike the elastic fracture in over-cured precursors or the viscoelastic deformation in under-cured precursors,the partially cured precursor,exhibiting elastic-plastic deformation behavior,facilitates limited nanoscale pore formation in a dense structure,achieving a balance between crack-free pyrolysis and densification.Compared to SiBCN derived from the over-cured precursor(σ=~159 MPa,K_(IC)=1.9 MPa:m^(1/2),Vickers hardness(HV)=7.8 GPa,and E=122 GPa),the resulting SiBCN monolith exhibited significantly improved mechanical properties(σ=~304 MPa,K_(IC)=3.7 MPa-m12,HV=10.6 GPa,and E=161 GPa)and oxidation resistance.In addition,this study investigated the high-temperature performance of SiBCN monoliths,including crystallization and oxidation,and determined the oxidation kinetics induced by pore structure healing and the different oxidation mechanisms of Si-C-N and B-C-N clusters in the amorphous structure.Due to its unique composition and structure,the SiBCN ceramic oxide layer exhibits exceptional self-healing effects on repairing the nanoporous system in the initial stage and shows outstanding high-temperature stability during prolonged oxidation,mitigating adverse effects from bubble formation and crystallization.Due to the nanoporous structure,the oxidation rate is initially controlled by gas diffusion following a linear law before transitioning to oxide layer diffusion characterized by a parabolic law.Finally,due to different valence bond configurations,Si-C-N transforms into an amorphous SiCNO structure after phase separation,unlike the nucleation and growth of residual B-N-C.展开更多
Pressure measurement with excellent stability and long time durability is highly desired,especially at high temperature and harsh environments.A polymer-derived silicoboron carbonitride(SiBCN)ceramic pressure sensor w...Pressure measurement with excellent stability and long time durability is highly desired,especially at high temperature and harsh environments.A polymer-derived silicoboron carbonitride(SiBCN)ceramic pressure sensor with excellent stability,accuracy,and repeatability is designed based on the giant piezoresistivity of SiBCN ceramics.The SiBCN ceramic sensor was packaged in a stainless steel case and tested using half Wheatstone bridge with the uniaxial pressure up to 10 MPa.The SiBCN ceramic showed a remarkable piezoresistive effect with the gauge factor(K)as high as 5500.The output voltage of packed SiBCN ceramic sensor changes monotonically and smoothly versus external pressure.The as received SiBCN pressure sensor possesses features of short response time,excellent repeatability,stability,sensitivity,and accuracy.Taking the excellent high temperature thermo-mechanical properties of polymer-derived SiBCN ceramics(e.g.,high temperature stability,oxidation/corrosion resistance)into account,SiBCN ceramic sensor has significant potential for pressure measurement at high temperature and harsh environments.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52372059,52172068,52232004,and 52002092)the Heilong Jiang Natural Science Fund for Young Scholars(No.YQ2021E017)+2 种基金the Fundamental Research Funds for the Central Universities(No.2022FRFK060012)the Heilongjiang Touyan Team Program,and the Advanced Talents Scientific Research Foundation of Shenzhen:Yu ZhouThis work was also funded by the Beijing Engineering Research Center of Efficient and Green Aerospace PropulsionTechnology and Advanced Space Propulsion Laboratory of Beijing Institute of Control Engineering(BICE)(No.LabASP-2023-11).
文摘In this study,a crack-free pyrolysis process of partially cured precursor powder compacts was developed to prepare dense silicon boron carbonitride(SiBCN)monoliths at much lower temperatures(1300℃),thereby circumventing the challenges of sintering densification(>1800℃).Unlike the elastic fracture in over-cured precursors or the viscoelastic deformation in under-cured precursors,the partially cured precursor,exhibiting elastic-plastic deformation behavior,facilitates limited nanoscale pore formation in a dense structure,achieving a balance between crack-free pyrolysis and densification.Compared to SiBCN derived from the over-cured precursor(σ=~159 MPa,K_(IC)=1.9 MPa:m^(1/2),Vickers hardness(HV)=7.8 GPa,and E=122 GPa),the resulting SiBCN monolith exhibited significantly improved mechanical properties(σ=~304 MPa,K_(IC)=3.7 MPa-m12,HV=10.6 GPa,and E=161 GPa)and oxidation resistance.In addition,this study investigated the high-temperature performance of SiBCN monoliths,including crystallization and oxidation,and determined the oxidation kinetics induced by pore structure healing and the different oxidation mechanisms of Si-C-N and B-C-N clusters in the amorphous structure.Due to its unique composition and structure,the SiBCN ceramic oxide layer exhibits exceptional self-healing effects on repairing the nanoporous system in the initial stage and shows outstanding high-temperature stability during prolonged oxidation,mitigating adverse effects from bubble formation and crystallization.Due to the nanoporous structure,the oxidation rate is initially controlled by gas diffusion following a linear law before transitioning to oxide layer diffusion characterized by a parabolic law.Finally,due to different valence bond configurations,Si-C-N transforms into an amorphous SiCNO structure after phase separation,unlike the nucleation and growth of residual B-N-C.
基金The authors appreciate the financial support from the National Natural Science Foundation of China(No.U1904180)Key Scientific Research Projects of High Education Institutions of Henan province(No.19A430025).
文摘Pressure measurement with excellent stability and long time durability is highly desired,especially at high temperature and harsh environments.A polymer-derived silicoboron carbonitride(SiBCN)ceramic pressure sensor with excellent stability,accuracy,and repeatability is designed based on the giant piezoresistivity of SiBCN ceramics.The SiBCN ceramic sensor was packaged in a stainless steel case and tested using half Wheatstone bridge with the uniaxial pressure up to 10 MPa.The SiBCN ceramic showed a remarkable piezoresistive effect with the gauge factor(K)as high as 5500.The output voltage of packed SiBCN ceramic sensor changes monotonically and smoothly versus external pressure.The as received SiBCN pressure sensor possesses features of short response time,excellent repeatability,stability,sensitivity,and accuracy.Taking the excellent high temperature thermo-mechanical properties of polymer-derived SiBCN ceramics(e.g.,high temperature stability,oxidation/corrosion resistance)into account,SiBCN ceramic sensor has significant potential for pressure measurement at high temperature and harsh environments.