The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in t...The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in the investigation of irradiated silicon are discussed as well as its properties.展开更多
By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon ...By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.展开更多
The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented...The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.展开更多
Numerical analysis and simulation have been an effective means to develop the advanced growth technology and to control the defects type, size and density for silicon crystals of 300 mm and beyond. In the present pape...Numerical analysis and simulation have been an effective means to develop the advanced growth technology and to control the defects type, size and density for silicon crystals of 300 mm and beyond. In the present paper, numerical analysis of the melt flow in the Czochralski (CZ) crystal growth configuration, the three dimensional (3D) modeling, the simulation of melt flow under the magnetic field, the inverse modeling and the time-dependent simulation are reviewed. Finally, comparison of numerical analysis with experimental measurements is discussed.展开更多
The recombination processes for charge carriers have been studied in n-type silicon crystals which were irradiated by pico-second duration pulse electrons with energy of 3.5 MeV (ultrafast irradiation), and maximum do...The recombination processes for charge carriers have been studied in n-type silicon crystals which were irradiated by pico-second duration pulse electrons with energy of 3.5 MeV (ultrafast irradiation), and maximum dose of 3.3 × 1013 el/cm2. In-situ measurements were carried out under artificial conditions simulating natural environment (space, semiconductor detectors, etc.). The observed phenomena were investigated experimentally in-situ using a high-speed oscilloscope equipped with a special preamplifier. Following irradiation to particular doses, some peculiarities of the recovery time of the semiconductor equilibrium condition (“characteristic time”), were obtained. Thus, it was found that the value of the “characteristic time” differs by an order of magnitude from the lifetime of the non-equilibrium (minority) charge carrier measured in an ex-situ regime. However, their behavior, as a function of irradiation dose, is similar and decreases with dose increase. Investigations of the dependencies of electro-physical parameters on irradiation dose, using Hall effect measurements, showed that at particular doses the radiation defects thus created, have an insignificant influence on the concentration of the charge carriers, but change their scattering properties appreciably, which affects the time parameters for the recombination of the semiconductor charge carriers. This investigation uses a novel approach to solid-state radiation physics, where in situ measurements were conducted in addition to conventional pre- and post-irradiation.展开更多
This paper reports results from an investigation of the interaction of displaced Si-self atoms (I) and their vacancies (V), with impurities in crystalline silicon (Si), as induced by micro-second pulse duration irradi...This paper reports results from an investigation of the interaction of displaced Si-self atoms (I) and their vacancies (V), with impurities in crystalline silicon (Si), as induced by micro-second pulse duration irradiation with electrons at different energies: 3.5, 14, 25 and 50 MeV and pico-second pulse duration with energy 3.5 MeV. V-V, I-impurity atom and V-impurity atom interactions are analyzed both experimentally and as modeled using computer simulations. A process of divacancy (V2) accumulation in the dose-dependent linear region is investigated. The effect of impurities on recombination of correlated divacancies, and I-atoms that had become displaced from regular lattice points is estimated by computer modeling of an appropriate diffusion-controlled process. It is concluded that the experimental results can be interpreted quantitatively in terms of a strongly anisotropic quasi-one-dimensional diffusion of displaced I-atoms. In addition, a significant difference is found between the effects of pico-second duration electron beam irradiation, which causes the formation of A-centre (V + Oxygen) clusters, while when the beam is applied on a micro-second timescale, divacancies are created instead, although the electrons have the same energy in both cases.展开更多
Present paper describes the investigation of vacancy (V) and interstitial (I) annihilation on oxygen atoms by means of infrared (IR) absorption and Hall-effect measurements of the accumulation of vacancy-oxygen comple...Present paper describes the investigation of vacancy (V) and interstitial (I) annihilation on oxygen atoms by means of infrared (IR) absorption and Hall-effect measurements of the accumulation of vacancy-oxygen complexes (VO) in Si crystals at high energy electron irradiation. Silicon samples, containing along with isolated oxygen atoms, more complicated oxygen quasi-molecules of SiOn (n = 1, 2, 3…) type, were used. At isochronal and isothermal annealing in the temperature range of 300°C - 350°C, apart from the reaction of vacancy capturing by oxygen atoms with formation of A-centers, more complicated reactions with participation of vacancies and oxygen atoms were observed: A-centers, oxygen containing quasi-molecules. A model is suggested to describe the observed processes that are qualitatively different from those taking place in samples containing completely dissociated oxygen.展开更多
Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been s...Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.展开更多
It is verified that the phonon scattering process and the residual linewidthare the dominant factors of the linewidth of 2210 cm^(-1) IR absorption peak except the anomalous linewidth at 200 K. By investigating the an...It is verified that the phonon scattering process and the residual linewidthare the dominant factors of the linewidth of 2210 cm^(-1) IR absorption peak except the anomalous linewidth at 200 K. By investigating the anomalities of the peak shape and thelinewidth of the peak at 200 K, we put forward a mechanism that the T_d symmetry of defect-complex corresponding to the 2210 cm^(-1) peak can he transferred into the D_(2d) symmetry as temperature rises to above 200 K. The quantitative analysis shows that the V+4H-model is indeed of two states: The T_d configuration is stable at temperature lower than 200 K, while the D_(2d) one is stable at temperature higher than 200 K. We can draw the conclusion that the V +4H-model corresponds to the 2210 cm^(-1) IR absorption peak from the symmetric breaking mechanism, which can quantitatively fit the experimental results.展开更多
Computer simulation was used for optimizing a hot zone for Czochralski (CZ) silicon crystal growth. The heater structure and heat shield material were investigated. With this optimized hot zone, the temperature grad...Computer simulation was used for optimizing a hot zone for Czochralski (CZ) silicon crystal growth. The heater structure and heat shield material were investigated. With this optimized hot zone, the temperature gradient near the crystal/melt interface increased and the CZ crystal could be grown at a faster rate. It is a great contribution for saving power consumption.展开更多
The self-assembled silicon substrate. The resultant contact angle meter and atomic method was introduced to successfully obtain film was characterized by means of X-ray rare earth(RE) nanofilm on a single-crystal ph...The self-assembled silicon substrate. The resultant contact angle meter and atomic method was introduced to successfully obtain film was characterized by means of X-ray rare earth(RE) nanofilm on a single-crystal photoelectron spectroscopy (XPS), ellipsometer, force microscopy (AFM). The scratch experiment was performed for interfacial adhesion measurement of the RE film. The friction and wear behavior of RE nanofilm was examined on a DF-PM reciprocating friction and wear tester. The results indicate the RE nanofilm is of low coefficient of friction (COF) and high wear resistance. These desirable characteristics of RE nanofilm together with its nanometer thickness, strong bonding to the substrate and low surface energy make it a promising choice as a solid lubricant film in micro electromechanical system (MEMS) devices.展开更多
A global analysis of heat transfer and fluid flow in a real Czochralski single silicon crystal furnace is developed using the FLUENT package.Good agreement was obtained for comparisons of the power and crystal growth ...A global analysis of heat transfer and fluid flow in a real Czochralski single silicon crystal furnace is developed using the FLUENT package.Good agreement was obtained for comparisons of the power and crystal growth speed between the simulation and experimental data,and the effect of the length of the crystal on heat transfer and fluid flow was analyzed.The results showed that T_(max) increases and its location moves downward as the crystal length increases.The flow pattern in the melt does not change until the crystal grows to 900 mm.As the crystal length increases,the flow pattern in the first gas area only changes when the crystal length is less than 700 mm,but the flow pattern in the second area changes throughout the growth process.展开更多
The authors perpared artifical crystals from silicon elastomer, which ensured medical purity, studied how to improve the light transmittance and the characteristics of moulding (sulfurization). This material has been ...The authors perpared artifical crystals from silicon elastomer, which ensured medical purity, studied how to improve the light transmittance and the characteristics of moulding (sulfurization). This material has been applied to many clinical cases.展开更多
Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step cons...Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si. The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILC without migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.展开更多
Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechani...Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining.In this study,single-and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter.The material removal characteristics and cracks under different planes,indenter directions,normal loading rates,and scratch intervals were analyzed using SEM,FIB,and a 3D profilometer,and the mechanisms of material removal and crack propagation were studied.The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining.The normal loading rate had little effect on the scratch depth,but a lower loading rate increased the ductile region and critical depth of transition.Additionally,the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval,the status of scratches and chips changed,and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation.The calculated and experimental values of the median crack depth also showed good consistency and relativity.Therefore,this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.展开更多
Laser interference induced crystallization of amorphous silicon (a-Si) on the glass substrate was performed using a Q-switched Nd:YAG (yttrium aluminum garnet) laser. White light interferometer (WLI) and atomic...Laser interference induced crystallization of amorphous silicon (a-Si) on the glass substrate was performed using a Q-switched Nd:YAG (yttrium aluminum garnet) laser. White light interferometer (WLI) and atomic force microscope (AFM) were used to characterize the morphology of the structured films, while X-ray diffraction (XRD), combined with the AFM, was used to analyse the crystalline structure of the film. The experimental results show that the laser energy density above a certain threshold, in the range of 400-500 mJ/cm2,triggers the patterned crystallizations which take the form similar to the laser intensity distribution. For the patterned crystallization under multipulse exposure, a definite polycrystalline structure with individual phases was observed by XRD. The difference in feature form, e.g., deepened craters or heightened lines, is related to the laser energy density relative to the threshold of evaporation of the material.展开更多
For large diarneter silicon single crystal, the solid-liquid growth interface is necessary to be a coneaveshape with a certain radius range. If the change of the radius of growth interface is not in this limited range...For large diarneter silicon single crystal, the solid-liquid growth interface is necessary to be a coneaveshape with a certain radius range. If the change of the radius of growth interface is not in this limited range,the growth of DF (dislocation free) sinsle crystal is very difficult. The growth of FZ-Si single crystal was stud-ied. It is found that the growth speed ( 2. 5~2. 7 mm/min) as well as the rotation speed (3. 5 r/min) for theΦ100 mm crystal can be smaller . comparing with the Φ76. 2 mm crystal with the same coil. In order to satisfythe demand of large diameter crystal . the size of coil should be large enough, and the shape should satisfy theneed of the growth interface of crystal. With the increasing of diameter , the heating power , the anode voltageand the strength of electric field within the coil should be increased, and Ar pressure in surrounding circum-stance should also be higher , from 1. 96 × 1 0 ̄4 Pa to 4. 90 × 10 ̄4 Pa.According to the above growth factors, three rods of Φ100 mm FZ-Si single crystal were grown success-fully , the weights are 8~10 kg. When the diameter of crystal cone is increased to a limited size, “remeltingarca” will occur in the surface of the crystal , which cause a failure of growing DF crystal , this reason may bethat the recrystalliztion direction has been chansed , as it does.展开更多
This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam li...This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. A ministop band (MSB) is observed by the measurement of transmission characteristics. It results from the coupling between the two modes with the same symmetry, which is analysed from the stimulated band diagram by the effective index and the two-dimensional plane wave expansion methods. The parameter working on the MSB is the ratio of the radius of air holes to the lattice constant, fla. It is obtained that the critical τ/a value determining the occurrence or disappearance of MSB is 0.36. When τ/a is larger than or equal to 0.36, the MSB occurs. However, when τ/a is smaller than 0.36, the MSB disappears.展开更多
文摘The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in the investigation of irradiated silicon are discussed as well as its properties.
文摘By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.
文摘The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.
基金the International Scientific and Technical Corporation Major Planning Project (No. 2005DFA5105).
文摘Numerical analysis and simulation have been an effective means to develop the advanced growth technology and to control the defects type, size and density for silicon crystals of 300 mm and beyond. In the present paper, numerical analysis of the melt flow in the Czochralski (CZ) crystal growth configuration, the three dimensional (3D) modeling, the simulation of melt flow under the magnetic field, the inverse modeling and the time-dependent simulation are reviewed. Finally, comparison of numerical analysis with experimental measurements is discussed.
文摘The recombination processes for charge carriers have been studied in n-type silicon crystals which were irradiated by pico-second duration pulse electrons with energy of 3.5 MeV (ultrafast irradiation), and maximum dose of 3.3 × 1013 el/cm2. In-situ measurements were carried out under artificial conditions simulating natural environment (space, semiconductor detectors, etc.). The observed phenomena were investigated experimentally in-situ using a high-speed oscilloscope equipped with a special preamplifier. Following irradiation to particular doses, some peculiarities of the recovery time of the semiconductor equilibrium condition (“characteristic time”), were obtained. Thus, it was found that the value of the “characteristic time” differs by an order of magnitude from the lifetime of the non-equilibrium (minority) charge carrier measured in an ex-situ regime. However, their behavior, as a function of irradiation dose, is similar and decreases with dose increase. Investigations of the dependencies of electro-physical parameters on irradiation dose, using Hall effect measurements, showed that at particular doses the radiation defects thus created, have an insignificant influence on the concentration of the charge carriers, but change their scattering properties appreciably, which affects the time parameters for the recombination of the semiconductor charge carriers. This investigation uses a novel approach to solid-state radiation physics, where in situ measurements were conducted in addition to conventional pre- and post-irradiation.
文摘This paper reports results from an investigation of the interaction of displaced Si-self atoms (I) and their vacancies (V), with impurities in crystalline silicon (Si), as induced by micro-second pulse duration irradiation with electrons at different energies: 3.5, 14, 25 and 50 MeV and pico-second pulse duration with energy 3.5 MeV. V-V, I-impurity atom and V-impurity atom interactions are analyzed both experimentally and as modeled using computer simulations. A process of divacancy (V2) accumulation in the dose-dependent linear region is investigated. The effect of impurities on recombination of correlated divacancies, and I-atoms that had become displaced from regular lattice points is estimated by computer modeling of an appropriate diffusion-controlled process. It is concluded that the experimental results can be interpreted quantitatively in terms of a strongly anisotropic quasi-one-dimensional diffusion of displaced I-atoms. In addition, a significant difference is found between the effects of pico-second duration electron beam irradiation, which causes the formation of A-centre (V + Oxygen) clusters, while when the beam is applied on a micro-second timescale, divacancies are created instead, although the electrons have the same energy in both cases.
文摘Present paper describes the investigation of vacancy (V) and interstitial (I) annihilation on oxygen atoms by means of infrared (IR) absorption and Hall-effect measurements of the accumulation of vacancy-oxygen complexes (VO) in Si crystals at high energy electron irradiation. Silicon samples, containing along with isolated oxygen atoms, more complicated oxygen quasi-molecules of SiOn (n = 1, 2, 3…) type, were used. At isochronal and isothermal annealing in the temperature range of 300°C - 350°C, apart from the reaction of vacancy capturing by oxygen atoms with formation of A-centers, more complicated reactions with participation of vacancies and oxygen atoms were observed: A-centers, oxygen containing quasi-molecules. A model is suggested to describe the observed processes that are qualitatively different from those taking place in samples containing completely dissociated oxygen.
基金financially supported by the Major National Science and Technology Projects(No.2008ZX02401)
文摘Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.
文摘It is verified that the phonon scattering process and the residual linewidthare the dominant factors of the linewidth of 2210 cm^(-1) IR absorption peak except the anomalous linewidth at 200 K. By investigating the anomalities of the peak shape and thelinewidth of the peak at 200 K, we put forward a mechanism that the T_d symmetry of defect-complex corresponding to the 2210 cm^(-1) peak can he transferred into the D_(2d) symmetry as temperature rises to above 200 K. The quantitative analysis shows that the V+4H-model is indeed of two states: The T_d configuration is stable at temperature lower than 200 K, while the D_(2d) one is stable at temperature higher than 200 K. We can draw the conclusion that the V +4H-model corresponds to the 2210 cm^(-1) IR absorption peak from the symmetric breaking mechanism, which can quantitatively fit the experimental results.
文摘Computer simulation was used for optimizing a hot zone for Czochralski (CZ) silicon crystal growth. The heater structure and heat shield material were investigated. With this optimized hot zone, the temperature gradient near the crystal/melt interface increased and the CZ crystal could be grown at a faster rate. It is a great contribution for saving power consumption.
文摘The self-assembled silicon substrate. The resultant contact angle meter and atomic method was introduced to successfully obtain film was characterized by means of X-ray rare earth(RE) nanofilm on a single-crystal photoelectron spectroscopy (XPS), ellipsometer, force microscopy (AFM). The scratch experiment was performed for interfacial adhesion measurement of the RE film. The friction and wear behavior of RE nanofilm was examined on a DF-PM reciprocating friction and wear tester. The results indicate the RE nanofilm is of low coefficient of friction (COF) and high wear resistance. These desirable characteristics of RE nanofilm together with its nanometer thickness, strong bonding to the substrate and low surface energy make it a promising choice as a solid lubricant film in micro electromechanical system (MEMS) devices.
基金supported by the Jiangsu Zhongli PV Technology Co.,Ltd
文摘A global analysis of heat transfer and fluid flow in a real Czochralski single silicon crystal furnace is developed using the FLUENT package.Good agreement was obtained for comparisons of the power and crystal growth speed between the simulation and experimental data,and the effect of the length of the crystal on heat transfer and fluid flow was analyzed.The results showed that T_(max) increases and its location moves downward as the crystal length increases.The flow pattern in the melt does not change until the crystal grows to 900 mm.As the crystal length increases,the flow pattern in the first gas area only changes when the crystal length is less than 700 mm,but the flow pattern in the second area changes throughout the growth process.
文摘The authors perpared artifical crystals from silicon elastomer, which ensured medical purity, studied how to improve the light transmittance and the characteristics of moulding (sulfurization). This material has been applied to many clinical cases.
基金Project supported by the National High Technology Development Program of China (Grant No 2002AA303250) and by the National Natural Science Foundation of China (Grant No 60576056).
文摘Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si. The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILC without migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.
基金Supported by National Natural Science Foundation of China(Grant No.51405034)Changsha Municipal Natural Science Foundation of China(Grant No.kq2202200)Hunan Provincial High-tech Industry Science and Technology Innovation Leading Program of China(Grant No.2022GK4027).
文摘Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining.In this study,single-and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter.The material removal characteristics and cracks under different planes,indenter directions,normal loading rates,and scratch intervals were analyzed using SEM,FIB,and a 3D profilometer,and the mechanisms of material removal and crack propagation were studied.The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining.The normal loading rate had little effect on the scratch depth,but a lower loading rate increased the ductile region and critical depth of transition.Additionally,the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval,the status of scratches and chips changed,and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation.The calculated and experimental values of the median crack depth also showed good consistency and relativity.Therefore,this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.
文摘Laser interference induced crystallization of amorphous silicon (a-Si) on the glass substrate was performed using a Q-switched Nd:YAG (yttrium aluminum garnet) laser. White light interferometer (WLI) and atomic force microscope (AFM) were used to characterize the morphology of the structured films, while X-ray diffraction (XRD), combined with the AFM, was used to analyse the crystalline structure of the film. The experimental results show that the laser energy density above a certain threshold, in the range of 400-500 mJ/cm2,triggers the patterned crystallizations which take the form similar to the laser intensity distribution. For the patterned crystallization under multipulse exposure, a definite polycrystalline structure with individual phases was observed by XRD. The difference in feature form, e.g., deepened craters or heightened lines, is related to the laser energy density relative to the threshold of evaporation of the material.
文摘For large diarneter silicon single crystal, the solid-liquid growth interface is necessary to be a coneaveshape with a certain radius range. If the change of the radius of growth interface is not in this limited range,the growth of DF (dislocation free) sinsle crystal is very difficult. The growth of FZ-Si single crystal was stud-ied. It is found that the growth speed ( 2. 5~2. 7 mm/min) as well as the rotation speed (3. 5 r/min) for theΦ100 mm crystal can be smaller . comparing with the Φ76. 2 mm crystal with the same coil. In order to satisfythe demand of large diameter crystal . the size of coil should be large enough, and the shape should satisfy theneed of the growth interface of crystal. With the increasing of diameter , the heating power , the anode voltageand the strength of electric field within the coil should be increased, and Ar pressure in surrounding circum-stance should also be higher , from 1. 96 × 1 0 ̄4 Pa to 4. 90 × 10 ̄4 Pa.According to the above growth factors, three rods of Φ100 mm FZ-Si single crystal were grown success-fully , the weights are 8~10 kg. When the diameter of crystal cone is increased to a limited size, “remeltingarca” will occur in the surface of the crystal , which cause a failure of growing DF crystal , this reason may bethat the recrystalliztion direction has been chansed , as it does.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60336010 and 60537010)
文摘This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. A ministop band (MSB) is observed by the measurement of transmission characteristics. It results from the coupling between the two modes with the same symmetry, which is analysed from the stimulated band diagram by the effective index and the two-dimensional plane wave expansion methods. The parameter working on the MSB is the ratio of the radius of air holes to the lattice constant, fla. It is obtained that the critical τ/a value determining the occurrence or disappearance of MSB is 0.36. When τ/a is larger than or equal to 0.36, the MSB occurs. However, when τ/a is smaller than 0.36, the MSB disappears.