Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grai...Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles.展开更多
在SOI晶圆材料的基础上,设计了压力敏感结构,提高了传感器的高温稳定性;采用敏感芯片背孔引线技术,将硅敏感芯片的正面和硼玻璃进行气密性阳极键合,通过在硼玻璃对应位置加工电极连接孔,实现芯片电极与外部管脚的电气连接,形成无引线封...在SOI晶圆材料的基础上,设计了压力敏感结构,提高了传感器的高温稳定性;采用敏感芯片背孔引线技术,将硅敏感芯片的正面和硼玻璃进行气密性阳极键合,通过在硼玻璃对应位置加工电极连接孔,实现芯片电极与外部管脚的电气连接,形成无引线封装结构;利用ANSYS软件对敏感芯片进行了力学仿真,对高温敏感芯体进行了热应力分析,完成了无引线封装结构的优化及制作。通过性能测试,该传感器测量范围为0~0.2 MPa,灵敏度为55.0 m V/MPa,非线性误差小于0.2%。展开更多
基金the National Natural Science Foundation of China(Grant No.12074273)。
文摘Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles.
文摘在SOI晶圆材料的基础上,设计了压力敏感结构,提高了传感器的高温稳定性;采用敏感芯片背孔引线技术,将硅敏感芯片的正面和硼玻璃进行气密性阳极键合,通过在硼玻璃对应位置加工电极连接孔,实现芯片电极与外部管脚的电气连接,形成无引线封装结构;利用ANSYS软件对敏感芯片进行了力学仿真,对高温敏感芯体进行了热应力分析,完成了无引线封装结构的优化及制作。通过性能测试,该传感器测量范围为0~0.2 MPa,灵敏度为55.0 m V/MPa,非线性误差小于0.2%。