期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries:A review
1
作者 Liu Yang Shuaining Li +6 位作者 Yuming Zhang Hongbo Feng Jiangpeng Li Xinyu Zhang Huai Guan Long Kong Zhaohui Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期30-45,I0002,共17页
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e... Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries. 展开更多
关键词 Lithium-ion batteries silicon/carbon composites Molecular scale Nanoscale MICROSCALE
下载PDF
Pioneering the direct large-scale laser printing of flexible“graphenic silicon”self-standing thin films as ultrahigh-performance lithium-ion battery anodes
2
作者 Avinash Kothuru Adam Cohen +2 位作者 Gil Daffan Yonatan Juhl Fernando Patolsky 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期26-40,共15页
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f... Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production. 展开更多
关键词 4D printing energy storage fast-charging laser-induced graphene LITHIUM-ION silicon carbon composite anodes
下载PDF
Research progress on silicon/carbon composite anode materials for lithium-ion battery 被引量:39
3
作者 Xiaohui Shen Zhanyuan Tian +5 位作者 Ruijuan Fan Le Shao Dapeng Zhang Guolin Cao Liang Kou Yangzhi Bai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1067-1090,共24页
Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availabi... Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs, 展开更多
关键词 Lithium-ion batteries Anodes silicon/carbon composite
下载PDF
Semisolid forging electronic packaging shell with silicon carbon-reinforced copper composites 被引量:2
4
作者 Kai-Kun Wang 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期191-195,共5页
To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combi... To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combined. Conventional mechanical mixing of Cu and SiC could have insufficient wettability, and a new method of semisolid processing was introduced for billets preparation. The SiC/Cu composites were first prepared by PM, and then, semisolid reheating was performed for the successive semisolid forging. Composite billets with SiC 35 % vol ume fraction were compacted and sintered pressurelessly, microstructure analysis showed that the composites pre pared by PM had high density, and the combination between SiC particles and Cualloy was good. Semisolid reheating was the crucial factor in determining the micro structure and thixotropic property of the billet. An opti mised reheating strategy was proposed: temperature 1,025 ℃and holding time 5 min. 展开更多
关键词 Semi-solid forming silicon carbon reinforcedcopper composites Electronic packaging shell MICROSTRUCTURE
下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:9
5
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites N-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
下载PDF
Fabrication of solid-phase-sintered Si C-based composites with short carbon fibers 被引量:1
6
作者 Xian-hui Li Qing-zhi Yan +2 位作者 Yong-jun Han Mei-qi Cao Chang-chun Ge 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1141-1145,共5页
Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure,... Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect. 展开更多
关键词 fiber-reinforced composites silicon carbide carbon fibers solid phase sintering microstructure
下载PDF
Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery 被引量:2
7
作者 Zhenyu Wu Jing Luo +3 位作者 Jiao Peng Hong Liu Baobao Chang Xianyou Wang 《Green Energy & Environment》 SCIE CSCD 2021年第4期517-527,共11页
Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batter... Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability. 展开更多
关键词 silicon/carbon composite Structure design Yolk/double-shells Double buffering carbon layers Li-ion batteries
下载PDF
Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers 被引量:4
8
作者 Liyang CAO Yongsheng LIU +5 位作者 Yunhai ZHANG Yejie CAO Jingxin LI Jie CHEN Lu ZHANG Zheng QI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期247-262,共16页
In this work,pitch-based carbon fibers were utilized to reinforce silicon carbide(SiC)composites via reaction melting infiltration(RMI)method by controlling the reaction temperature and resin carbon content.Thermal co... In this work,pitch-based carbon fibers were utilized to reinforce silicon carbide(SiC)composites via reaction melting infiltration(RMI)method by controlling the reaction temperature and resin carbon content.Thermal conductivities and bending strengths of composites obtained under different preparation conditions were characterized by various analytical methods.Results showed the formation of SiC whiskers(SiC_(w))during RMI process according to vapor–solid(VS)mechanism.SiC_(w) played an important role in toughening the C_(pf)/SiC composites due to crack bridging,crack deflection,and SiC_(w) pull-out.Increase in reaction temperature during RMI process led to an initial increase in thermal conductivity along in-plane and thickness directions of composites,followed by a decline.At reaction temperature of 1600℃,thermal conductivities along the in-plane and thickness directions were estimated to be 203.00 and 39.59 W/(m×K),respectively.Under these conditions,bending strength was recorded as 186.15±3.95 MPa.Increase in resin carbon content before RMI process led to the generation of more SiC matrix.Thermal conductivities along in-plane and thickness directions remained stable with desirable values of 175.79 and 38.86 W/(m×K),respectively.By comparison,optimal bending strength improved to 244.62±3.07 MPa.In sum,these findings look promising for future application of pitch-based carbon fibers for reinforcement of SiC ceramic composites. 展开更多
关键词 pitch-based carbon fiber continuous carbon fiber reinforced silicon carbide matrix composites(C/SiC) thermal conductivity bending strength
原文传递
Electrospinning-Enabled Si/C Nanofibers with Dual Modification as Anode Materials for High-Performance Lithium-Ion Batteries 被引量:1
9
作者 Yi Yan Huajun Guo +3 位作者 Zhixing Wang Xinhai Li Guochun Yan Jiexi Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第3期329-336,共8页
In this work,silicon@reduced graphene oxide/pyrolytic carbon nanofibers(Si@RGO/C NFs)composite with double modified layer is prepared through electrospinning,stabilization and carbonization.In this composite,polyethyl... In this work,silicon@reduced graphene oxide/pyrolytic carbon nanofibers(Si@RGO/C NFs)composite with double modified layer is prepared through electrospinning,stabilization and carbonization.In this composite,polyethylene oxide-polypropylene oxide-polyethylene oxide(P123,a non-ionic surfactant)is introduced as the dispersant,which can make silicon nanoparticles evenly dispersed in electrospinning solution to prevent it from agglomeration.Graphene modified layer can buffer the volumetric expansion of silicon nanoparticles,prevent direct contact between silicon and electrolyte as well as enhance the electrical conductivity.Moreover,carbon fibers synthesized by electrospinning can encapsulate silicon@graphene composite internally to form a double modified layer.This composite with double modified layer can further alleviate the volume change of silicon nanoparticles and avoid direct contact between silicon and electrolyte to form a stable interface.Owing to the above-mentioned merits,the Si@RGO/C NFs composite exhibits excellent cyclic stability and superior rate performance.Particularly,it maintains a specific capacity of 929 mA h g^(-1)with the retention ratio of 83.1%after 100 cycles at 0.5 A g^(-1)and delivers an outstanding rate capability of 1003 mA h g^(-1)at 2 A g^(-1). 展开更多
关键词 Lithium-ion batteries silicon/carbon composite Surface modification Graphene ELECTROSPINNING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部