We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon ...We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.展开更多
In this paper we put forward a new concept about effective trapping center concentration N^e_T which is decreasing with the trapped charge Q corresponding to index movement,based on that,we discuss theⅠ-Ⅴand tempera...In this paper we put forward a new concept about effective trapping center concentration N^e_T which is decreasing with the trapped charge Q corresponding to index movement,based on that,we discuss theⅠ-Ⅴand temperature characteristics of polysilicon resistors.The new concept presents ideal theoretical interpretion for the originally observed current-voltage negative-resistance characteristics of polysilicon resistors formed on the flow sensor,and also for poly-silicon film resistors. The final results agree well with the theoretical current-voltage characteristics.展开更多
The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO...The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect, oxygen atom shares a vacancy, it is bonded to two silicon neighbors. Annealed at 200 ℃, divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2), 834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1, 825 cm-1 and 889 cm-1 (VO2), in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO, etc, in high dose neutron irradiated CZ-Si (S2), the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose, the annealing behavior of A-center is changed.展开更多
We present the findings of spin-dependent single-hole and pair-hole transport in plane and across the p-type high mobility silicon quantum wells (Si-QW), 2 nm, confined by the superconductor δ-barriers on the n-type ...We present the findings of spin-dependent single-hole and pair-hole transport in plane and across the p-type high mobility silicon quantum wells (Si-QW), 2 nm, confined by the superconductor δ-barriers on the n-type Si (100) surface. The oscillations of the conductance in normal state and the zero-resistance supercurrent in superconductor state as a function of the top gate voltage are found to be correlated by on- and off-resonance tuning the two-dimensional levels of holes in Si-QW with the Fermi energy in the superconductor δ-barriers. The SIMS and STM studies have shown that the δ-barriers heavily doped with boron, 5 × 1021 cm–3, represent really alternating arrays of silicon empty and doped dots, with dimensions restricted to 2 nm. This concentration of boron seems to indicate that each doped dot located between empty dots contains two impurity atoms of boron. The EPR studies show that these boron pairs are the trigonal dipole centres, B+ - B–, that contain the pairs of holes, which result from the negative -U reconstruction of the shallow boron acceptors, 2B0 => B+ - B–. The electrical resistivity, magnetic susceptibility and specific heat measurements demonstrate that the high density of holes in the Si-QW (> 1011 cm–2) gives rise to the high temperature superconductor properties for the δ-barriers. The value of the superconductor energy gap obtained is in a good agreement with the data derived from the oscillations of the conductance in normal state and of the zero-resistance supercurrent in superconductor state as a function of the bias voltage. These oscillations appear to be correlated by on- and off-resonance tuning the two-dimensional subbands of holes with the Fermi energy in the superconductor δ-barriers. Finally, the proximity effect in the S-Si-QW-S structure is revealed by the findings of the quantization of the supercurrent and the multiple Andreev reflection (MAR) observed both across and along the Si-QW plane thereby identifying the spin transistor effect.展开更多
As a single photon source,silicon vacancy(V_(Si))centers in wide bandgap semiconductor silicon carbide(SiC)are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum com...As a single photon source,silicon vacancy(V_(Si))centers in wide bandgap semiconductor silicon carbide(SiC)are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum computing.Simultaneously,the new direct femtosecond(fs)laser writing technology has been successfully applied to preparing V_(Si)s in SiC.In this study,6H-SiC,which has been less studied,was used as the processed material.V_(Si) center arrays were formed on the 6H-SiC surface using a 1030-nm-wavelength fs pulsed laser.The surface was characterized by white light microscopy,atomic force microscopy,and confocal photoluminescence(PL)/Raman spectrometry.The effect of fs laser energy,vector polarization,pulse number,and repetition rate on 6H-SiC V_(Si) defect preparation was analyzed by measuring the V_(Si) PL signal at 785-nm laser excitation.The results show that fs laser energy and pulse number greatly influence the preparation of the color center,which plays a key role in optimizing the yield of V_(Si)s prepared by fs laser nanomachining.展开更多
文摘We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.
文摘In this paper we put forward a new concept about effective trapping center concentration N^e_T which is decreasing with the trapped charge Q corresponding to index movement,based on that,we discuss theⅠ-Ⅴand temperature characteristics of polysilicon resistors.The new concept presents ideal theoretical interpretion for the originally observed current-voltage negative-resistance characteristics of polysilicon resistors formed on the flow sensor,and also for poly-silicon film resistors. The final results agree well with the theoretical current-voltage characteristics.
基金Project(50472034) supported by the National Natural Science Foundation of China Project(E2005000048) supported by the Natural Science Foundation of Hebei Province, China Project(20050080006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China.
文摘The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect, oxygen atom shares a vacancy, it is bonded to two silicon neighbors. Annealed at 200 ℃, divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2), 834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1, 825 cm-1 and 889 cm-1 (VO2), in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO, etc, in high dose neutron irradiated CZ-Si (S2), the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose, the annealing behavior of A-center is changed.
文摘We present the findings of spin-dependent single-hole and pair-hole transport in plane and across the p-type high mobility silicon quantum wells (Si-QW), 2 nm, confined by the superconductor δ-barriers on the n-type Si (100) surface. The oscillations of the conductance in normal state and the zero-resistance supercurrent in superconductor state as a function of the top gate voltage are found to be correlated by on- and off-resonance tuning the two-dimensional levels of holes in Si-QW with the Fermi energy in the superconductor δ-barriers. The SIMS and STM studies have shown that the δ-barriers heavily doped with boron, 5 × 1021 cm–3, represent really alternating arrays of silicon empty and doped dots, with dimensions restricted to 2 nm. This concentration of boron seems to indicate that each doped dot located between empty dots contains two impurity atoms of boron. The EPR studies show that these boron pairs are the trigonal dipole centres, B+ - B–, that contain the pairs of holes, which result from the negative -U reconstruction of the shallow boron acceptors, 2B0 => B+ - B–. The electrical resistivity, magnetic susceptibility and specific heat measurements demonstrate that the high density of holes in the Si-QW (> 1011 cm–2) gives rise to the high temperature superconductor properties for the δ-barriers. The value of the superconductor energy gap obtained is in a good agreement with the data derived from the oscillations of the conductance in normal state and of the zero-resistance supercurrent in superconductor state as a function of the bias voltage. These oscillations appear to be correlated by on- and off-resonance tuning the two-dimensional subbands of holes with the Fermi energy in the superconductor δ-barriers. Finally, the proximity effect in the S-Si-QW-S structure is revealed by the findings of the quantization of the supercurrent and the multiple Andreev reflection (MAR) observed both across and along the Si-QW plane thereby identifying the spin transistor effect.
基金supported by the‘111’project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘As a single photon source,silicon vacancy(V_(Si))centers in wide bandgap semiconductor silicon carbide(SiC)are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum computing.Simultaneously,the new direct femtosecond(fs)laser writing technology has been successfully applied to preparing V_(Si)s in SiC.In this study,6H-SiC,which has been less studied,was used as the processed material.V_(Si) center arrays were formed on the 6H-SiC surface using a 1030-nm-wavelength fs pulsed laser.The surface was characterized by white light microscopy,atomic force microscopy,and confocal photoluminescence(PL)/Raman spectrometry.The effect of fs laser energy,vector polarization,pulse number,and repetition rate on 6H-SiC V_(Si) defect preparation was analyzed by measuring the V_(Si) PL signal at 785-nm laser excitation.The results show that fs laser energy and pulse number greatly influence the preparation of the color center,which plays a key role in optimizing the yield of V_(Si)s prepared by fs laser nanomachining.